Abstract

We report single longitudinal mode operation of a pulsed Nd:YAG pumped periodically poled lithium niobate optical parametric oscillator (OPO). The combination of a prism and an etalon provides both coarse and fine spectral resolution, thereby eliminating parasitic resonant oscillation of cascaded signal wavelengths, idler wavelengths, and adjacent longitudinal modes of the signal field. Optical bandwidths of less than 300 MHz have been obtained at signal wavelengths between 1.47 and 1.59 µm. In comparison with broadband operation, the single-mode OPO shows only a 9% reduction in pump depletion with a negligible reduction in extraction efficiency.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
    [CrossRef]
  2. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  3. J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
    [CrossRef]
  4. L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
    [CrossRef]
  5. L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, W. Hogervorst, “Narrow-band β-BaB2O4 optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
    [CrossRef]
  6. P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
    [CrossRef]
  7. G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
    [CrossRef]
  8. M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Express 1, 49–53 (1997).
    [CrossRef] [PubMed]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]

1998 (2)

P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
[CrossRef]

G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
[CrossRef]

1997 (3)

1996 (1)

1995 (1)

1971 (1)

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

1969 (1)

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

Alexander, J. I.

Baxter, G. W.

G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
[CrossRef]

Boon-Engering, J. M.

Bosenberg, W. R.

L. E. Myers, W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Butterworth, S. D.

P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
[CrossRef]

Byer, R. L.

Dominic, V.

Drobshoff, A.

Eckardt, R. C.

Gloster, L. A. W.

Grayson, T. P.

Harris, S. E.

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

He, Y.

G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
[CrossRef]

Hogervorst, W.

Jiang, Z. X.

Jundt, D. H.

King, T. A.

Kreuzer, L. B.

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

McKinnie, I. T.

P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, W. Hogervorst, “Narrow-band β-BaB2O4 optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
[CrossRef]

Miles, R. B.

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

Myers, L. E.

Orr, B. J.

G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
[CrossRef]

Schlup, P.

P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
[CrossRef]

Vaidyanathan, M.

van der Veer, W. E.

Wallace, R. W.

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

Young, J. F.

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

Appl. Phys. B (1)

G. W. Baxter, Y. He, B. J. Orr, “A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy,” Appl. Phys. B 67, 754–756 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. E. Myers, W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[CrossRef]

J. Appl. Phys. (1)

J. F. Young, R. B. Miles, S. E. Harris, R. W. Wallace, “Pump linewidth requirement for optical parametric oscillators,” J. Appl. Phys. 42, 497–498 (1971).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Schlup, S. D. Butterworth, I. T. McKinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator,” Opt. Commun. 154, 191–195 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration of the OPO: HR, high reflector; OC, output coupler.

Fig. 2
Fig. 2

Temporal profiles (top) and OPO signal efficiency (bottom) indicating the presence of cascaded parametric oscillation. With cascading present, we observe a roll-over in OPO signal efficiency and an oscillatory signal temporal profile (a). Corresponding oscillations on the depleted pump temporal profile are absent (b). With cascading eliminated, the signal output energy increases monotonically up to the maximum pump energy (c).

Fig. 3
Fig. 3

Intensity as a function of distance (linearized) along an illuminated strip through the fringe patterns measured with the OPO illuminating the 14- and 5-GHz FSR Fabry–Perot interferometers. Results are shown for the OPO operating at signal wavelengths of (a) and (b) 1.55 µm, (c) 1.47 µm.

Fig. 4
Fig. 4

(a) OPO signal output energy and (b) pump depletion as a function of pump energy, showing the effect of adding the intracavity etalon, at a signal wavelength of 1.55 µm.

Metrics