Abstract

The construction, modeling, and performance characteristics of a new resonator design for ultrafast cavity-dumped oscillators are presented. An acousto-optic Bragg cell was incorporated at the end of the longer arm of a Ti:sapphire oscillator rather than in the shorter arm as in several recent studies. The new arrangement improves the pulse intensity stability of the oscillator and significantly reduces the effort required in construction. The experimental findings are supported by comparison of the stability regions of the laser cavities based on the two different designs. To demonstrate the potential of cavity-dumped oscillators for spatially resolved ultrafast spectroscopy studies, the pulse duration is characterized at the focal plane of two achromatic high-N.A. oil-immersion objectives with different amounts of flat-field correction. Transform-limited pulse widths as short as 15 fs are obtained. To our knowledge, this is the shortest pulse duration measured with true high-N.A. (N.A. > 1) focusing conditions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  2. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
    [CrossRef] [PubMed]
  3. A. Stingl, C. Spielmann, F. Krausz, R. Szipöcs, “Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204–206 (1994).
    [CrossRef] [PubMed]
  4. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
    [CrossRef] [PubMed]
  5. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
    [CrossRef] [PubMed]
  6. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
    [CrossRef] [PubMed]
  7. T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17, 1009–1011 (1992).
    [CrossRef] [PubMed]
  8. S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
    [CrossRef]
  9. M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”
  10. M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993).
    [CrossRef] [PubMed]
  11. M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994).
    [CrossRef] [PubMed]
  12. D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
    [CrossRef]
  13. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21, 354–356 (1996).
    [CrossRef] [PubMed]
  14. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
    [CrossRef]
  15. B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
    [CrossRef]
  16. W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  17. M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
    [CrossRef]
  18. J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
    [CrossRef]
  19. M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
    [CrossRef]
  20. Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
    [CrossRef]
  21. W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
    [CrossRef]
  22. A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
    [CrossRef] [PubMed]
  23. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
    [CrossRef]
  24. D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).
  25. L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999).
    [CrossRef]
  26. Approximate distances of mirror separation for the new design in units of centimeters are OC–M2, 22.2; M2–M1, 10.4; M1–P1, 18; P1–P2, 40; P2–P3, 14; P3–P4, 40; P4–M3, 29; M3–M4, 20.7. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.
  27. Approximate distances of mirror separation for the traditional design in units of centimeters are HR– (high reflector–) M4, 30; M4–M3, 14.6; M3–M2, 43.5; M2–M1, 10.7; M1–P1, 21.5; P1–P2, 62; P2–OC, 12. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.
  28. C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
    [CrossRef]
  29. T. Brabec, P. E. Curley, C. Spielmann, E. Wintner, A. J. Schmidt, “Hard-aperture Kerr-lens mode locking,” J. Opt. Soc. Am. B 10, 1029–1034 (1993).
    [CrossRef]
  30. A. J. Ruggiero, N. F. Scherer, G. M. Mitchell, G. R. Fleming, J. N. Hogan, “Regenerative amplification of picosecond pulses in Nd-YAG at repetition rates in the 100-kHz range,” J. Opt. Soc. Am. B 8, 2061–2067 (1991).
    [CrossRef]
  31. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  32. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
    [CrossRef]
  33. W. P. de Boeij, “Ultrafast solvation dynamics explored by nonlinear optical spectroscopy,” Ph.D. dissertation (Department of Chemical Physics, University of Groningen, Groningen, The Netherlands, 1997).
  34. A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
    [CrossRef]
  35. E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
    [CrossRef]
  36. J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
    [CrossRef]
  37. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
    [CrossRef]
  38. P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
    [CrossRef]
  39. J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
    [CrossRef]
  40. F. Muchel, “ICS: a new principle in optics,” Zeiss Inform. Oberkochen 30, 20–27 (1988).
  41. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
    [CrossRef]
  42. Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158.
    [CrossRef]
  43. Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

1999 (5)

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999).
[CrossRef]

J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

1998 (8)

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
[CrossRef]

W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
[CrossRef]

1997 (3)

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

1996 (2)

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21, 354–356 (1996).
[CrossRef] [PubMed]

1995 (2)

D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
[CrossRef]

A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (3)

1992 (2)

T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17, 1009–1011 (1992).
[CrossRef] [PubMed]

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

1991 (2)

1990 (2)

W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
[CrossRef]

1988 (1)

F. Muchel, “ICS: a new principle in optics,” Zeiss Inform. Oberkochen 30, 20–27 (1988).

1972 (1)

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Arnett, D. C.

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
[CrossRef]

D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
[CrossRef]

Asaki, M. T.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

Baltuška, A.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Barty, C. P. J.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Book, L.

L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999).
[CrossRef]

Bopp, M. A.

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

T. Brabec, P. E. Curley, C. Spielmann, E. Wintner, A. J. Schmidt, “Hard-aperture Kerr-lens mode locking,” J. Opt. Soc. Am. B 10, 1029–1034 (1993).
[CrossRef]

Brakenhoff, G. J.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

Cao, J. M.

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

Castner, E. W.

E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
[CrossRef]

Cavalleri, A.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Chang, Q.

Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Chang, Z. H.

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

Christov, I.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Curley, P. E.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

Cybo-Ottone, A.

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

de Boeij, W. P.

W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[CrossRef] [PubMed]

W. P. de Boeij, “Ultrafast solvation dynamics explored by nonlinear optical spectroscopy,” Ph.D. dissertation (Department of Chemical Physics, University of Groningen, Groningen, The Netherlands, 1997).

De Silvestri, S.

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Dorn, P.

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

Durfee, C. G.

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Dutton, P. L.

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Feldstein, M. J.

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158.
[CrossRef]

Fittinghoff, D. N.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Flanders, B.

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Flanders, B. N.

B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
[CrossRef]

Fleming, G. R.

Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
[CrossRef]

A. J. Ruggiero, N. F. Scherer, G. M. Mitchell, G. R. Fleming, J. N. Hogan, “Regenerative amplification of picosecond pulses in Nd-YAG at repetition rates in the 100-kHz range,” J. Opt. Soc. Am. B 8, 2061–2067 (1991).
[CrossRef]

Frey, H.

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

Fujimoto, J. G.

Garvey, D.

Grueztzmacher, J.

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Guo, T.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Haran, G.

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Herne, C.

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

Hochstrasser, R. M.

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Hogan, J. N.

Horn, M.

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Huang, C.-P.

Ihee, H.

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Jasapara, J.

J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

Jia, Y.

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Jimenez, R.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Jung, I. D.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Kamalov, V.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
[CrossRef] [PubMed]

M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

Kärtner, F. X.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Kean, P. N.

Keller, U.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Korpershoek, J. J.

E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
[CrossRef]

Krausz, F.

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Lenzner, M.

Liau, Y.-H.

Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158.
[CrossRef]

Ma, J.

Magni, V.

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Matuschek, N.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Mitchell, G. M.

Morier-Genoud, F.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Morlino, E. A.

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

Moser, C. C.

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

Muchel, F.

F. Muchel, “ICS: a new principle in optics,” Zeiss Inform. Oberkochen 30, 20–27 (1988).

Müller, M.

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Murnane, M. M.

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
[CrossRef] [PubMed]

M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

Nagasawa, Y.

Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
[CrossRef]

Nisoli, M.

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

Norris, T. B.

Paye, J.

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Pshenichnikov, M. S.

W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[CrossRef] [PubMed]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Raksi, F.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Ramaswamy, M.

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Rose-Petruck, C.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Rudolph, W.

J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

Ruggiero, A. J.

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Rundquist, A.

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

Scherer, N. F.

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999).
[CrossRef]

B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
[CrossRef]

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
[CrossRef]

A. J. Ruggiero, N. F. Scherer, G. M. Mitchell, G. R. Fleming, J. N. Hogan, “Regenerative amplification of picosecond pulses in Nd-YAG at repetition rates in the 100-kHz range,” J. Opt. Soc. Am. B 8, 2061–2067 (1991).
[CrossRef]

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158.
[CrossRef]

Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Scheuer, V.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Schmidt, A. J.

Shang, X.

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Sheik-Bahae, M.

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

Sibbett, W.

Siders, C. W.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Slobodchikov, E.

Spence, D. E.

Spielmann, C.

Squier, J. A.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

Stingl, A.

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Sutter, D. H.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Svelto, O.

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

Sweetser, J. N.

Szipöcs, R.

Taft, G.

Tilsch, M.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Tominaga, K.

Trebino, R.

Tschudi, T.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Ulman, M.

Unterreiner, A. N.

Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Vöhringer, P.

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
[CrossRef]

Walker, B. C.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

Wang, W.

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wei, Z.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

Wiersma, D. A.

W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[CrossRef] [PubMed]

E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
[CrossRef]

Williamson, J. C.

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

Wilson, K. R.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

Wintner, E.

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Yoshihara, K.

Yu, J. Y.

Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
[CrossRef]

Zeller, J.

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

Zewail, A. H.

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

Zhang, G.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Zhou, J.

Annu. Rev. Phys. Chem. (1)

W. P. de Boeij, M. S. Pshenichnikov, D. A. Wiersma, “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies,” Annu. Rev. Phys. Chem. 49, 99–123 (1998).
[CrossRef]

Appl. Phys. B (1)

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Bopp, Y. Jia, G. Haran, E. A. Morlino, R. M. Hochstrasser, “Single-molecule spectroscopy with 27 fs pulses: time-resolved experiments and direct imaging of orientational distributions,” Appl. Phys. Lett. 73, 7–9 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer,” IEEE J. Quantum Electron. 4, 353–359 (1998).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

J. Am. Chem. Soc. (1)

D. C. Arnett, P. Vöhringer, N. F. Scherer, “Excitation dephasing, product formation, and vibrational coherence in an intervalence charge-transfer reaction,” J. Am. Chem. Soc. 117, 12,262–12,272 (1995).
[CrossRef]

J. Chem. Phys. (2)

Y. Nagasawa, J. Y. Yu, G. R. Fleming, “Solute-solvent interaction dynamics studied by photon echo spectroscopies in polymer glasses,” J. Chem. Phys. 109, 6175–6183 (1998).
[CrossRef]

L. Book, N. F. Scherer, “Wavelength-resolved stimulated photon echoes: direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing,” J. Chem. Phys. 111, 1–4 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (2)

D. C. Arnett, C. C. Moser, P. L. Dutton, N. F. Scherer, “The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides,” J. Phys. Chem. 103, 2014–2032 (1999).

M. J. Feldstein, P. Vöhringer, W. Wang, N. F. Scherer, “Femtosecond optical spectroscopy and scanning probe microscopy,” J. Phys. Chem. 100, 4739–4748 (1996).
[CrossRef]

Nature (London) (3)

J. C. Williamson, J. M. Cao, H. Ihee, H. Frey, A. H. Zewail, “Clocking transient chemical changes by ultrafast electron diffraction,” Nature (London) 386, 159–162 (1997).
[CrossRef]

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Raksi, J. A. Squier, B. C. Walker, K. R. Wilson, C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature (London) 398, 310–312 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 51–54 (1999).
[CrossRef]

Opt. Commun. (3)

A. Cybo-Ottone, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, “Highly stable 60-fs pulses from a cavity-dumped hybridly mode-locked dye-laser,” Opt. Commun. 92, 271–276 (1992).
[CrossRef]

E. W. Castner, J. J. Korpershoek, D. A. Wiersma, “Experimental and theoretical resonator analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990).
[CrossRef]

J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998).
[CrossRef]

Opt. Lett (1)

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett 22, 1009–1011 (1997).
[CrossRef] [PubMed]

Opt. Lett. (11)

T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17, 1009–1011 (1992).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
[CrossRef] [PubMed]

M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

A. Stingl, C. Spielmann, F. Krausz, R. Szipöcs, “Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204–206 (1994).
[CrossRef] [PubMed]

J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, I. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
[CrossRef] [PubMed]

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21, 354–356 (1996).
[CrossRef] [PubMed]

M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,” Opt. Lett. 18, 1822–1824 (1993).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994).
[CrossRef] [PubMed]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, M. Müller, “Collinear type II second-harmonic-generation frequency-resolved optical gating for use with highnumerical-aperture objectives,” Opt. Lett. 23, 1046–1048 (1998).
[CrossRef]

J. Jasapara, W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Science (2)

W. Denk, J. H. Strickler, W. W. Webb, “2-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[CrossRef] [PubMed]

Zeiss Inform. Oberkochen (1)

F. Muchel, “ICS: a new principle in optics,” Zeiss Inform. Oberkochen 30, 20–27 (1988).

Other (8)

W. P. de Boeij, “Ultrafast solvation dynamics explored by nonlinear optical spectroscopy,” Ph.D. dissertation (Department of Chemical Physics, University of Groningen, Groningen, The Netherlands, 1997).

Y.-H. Liau, M. J. Feldstein, N. F. Scherer, “Ultrafast STM-tip localized responses from nanostructured surfaces,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 156–158.
[CrossRef]

Y.-H. Liau (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637), A. N. Unterreiner, Q. Chang, N. F. Scherer are preparing a manuscript to be called “Ultrafast dephasing of surface plasmons in single Ag colloids studied by spatially resolved SHG-interferometry.”

Approximate distances of mirror separation for the new design in units of centimeters are OC–M2, 22.2; M2–M1, 10.4; M1–P1, 18; P1–P2, 40; P2–P3, 14; P3–P4, 40; P4–M3, 29; M3–M4, 20.7. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.

Approximate distances of mirror separation for the traditional design in units of centimeters are HR– (high reflector–) M4, 30; M4–M3, 14.6; M3–M2, 43.5; M2–M1, 10.7; M1–P1, 21.5; P1–P2, 62; P2–OC, 12. Fold angle about TS (Ti:sapphire), 15°; about BC (Bragg cell), 11°.

P. Dorn, J. Jasapara, J. Zeller, W. Rudolph, M. Sheik-Bahae, “Femtosecond nonlinear microscopy of photodetectors,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. Wiersma, W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 165–167.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

M. Horn, J. Grueztzmacher, B. Flanders, X. Shang, N. F. Scherer (Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637) are preparing a manuscript to be called “Gain-switched low dispersion all acousto-optic femtosecond pulse amplifier.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of two different designs of the CDTS oscillator. (a) New design. The pump laser is a frequency-doubled diode-pumped YVO4 laser (Spectra-Physics Millennia); lens, f = 10 cm; M1–M2, R = 10-cm mirrors (CVI Model TLM2); OC, 8% transmission (CVI Model PR2); M3, R = 20-cm mirrors (CVI Model TLM2); M4, R = 10-cm mirrors (CVI Model TLM2); P1–P2–P3–P4, fused-silica prisms; TS, Ti:sapphire crystal (4-mm-path-length slab, Crystal Systems); BC, Bragg cell (Harris Model H-101). (b) Conventional design. All optics are the same as in (a) except OC, 2.5% transmission (CVI Model PR2); M3–M4, R = 15-cm mirrors (CVI Model TLM2); HR, high reflector (CVI Model TLM2).

Fig. 2
Fig. 2

(a) Stability diagram of the new CDTS oscillator design shown in Fig. 1(a). The approximate point of pulsed operation is M1–M2 = 10.4 cm, M3–M4 = 20.7 cm. (b) Stability diagram of the conventional CDTS oscillator. The two stability regions seen for the M1–M2 distance corresponding to the pulsing configuration can be located (empirically) when the separation of M3 and M4 is chosen to be near confocal, i.e., at 14.6 cm in this case.

Fig. 3
Fig. 3

Stability diagrams calculated for cavities of different arm-length ratios. All the parameters are the same as those used for the calculation shown in Fig. 2(a) except that the ratios between the two arm lengths vary from 1:7 to 1:1 as designated in each panel.

Fig. 4
Fig. 4

Pulse intensity distribution represented as percentage of deviation for the average intensity. (a). New design. The repetition rate was 250 kHz for the cavity-dumped pulse train (circles) and 76.7 MHz for the output-coupled pulse train (triangles). Each data point is the average of three measurements. The data point density was doubled by cubic spline interpolation before fitting with a Gaussian curve. The FWHM of the distribution is 0.23% for the cavity-dumped pulses and 0.10% for the output-coupled pulses. (b) Measured for the conventional design. The repetition rates are the same, and the symbols have the same meaning. The FWHM of the distribution is 0.38% for the cavity-dumped pulses and 0.21% for the output-coupled pulses.

Fig. 5
Fig. 5

Interferometric autocorrelation measured at the focal plane of a high-N.A., near-flat-field, achromatic microscope objective. The extracted pulse duration of the experimental data (circles) is 15 fs assuming a quadratic hyperbolic secant intensity profile. Solid curve, calculated interferogram. Inset, spectrum of the cavity-dumped pulses. The spectrum is corrected for the fiber-coupled spectrometer–detector wavelength response by a tungsten lamp.

Fig. 6
Fig. 6

Reflected light intensity measured with respect to the lateral coordinate of a razor blade scanned across the focus of an oil-immersion objective used to focus 15-fs pulses. The best fit and the retrieved Gaussian function representing the point-spread function of the objective are shown as a solid and a dashed curve, respectively. The spot size, defined as the FWHM of the Gaussian, was 730 nm.

Metrics