Abstract

An efficient pumping scheme that involves direct excitation of the upper lasing level of the Nd3+ ion is demonstrated experimentally. The results obtained for direct upper laser level pumping of Nd:YAG R2 (869 nm) and Nd:YVO4 (880 nm) were compared with traditional ∼808-nm pump band excitation. A tunable cw Ti:sapphire laser was used as the pump source. In Nd:YAG, the oscillator slope efficiency increased by 10% and the threshold decreased by 11%. In Nd:YVO4, the slope efficiency increased by 5% and the threshold decreased by 11%. These results agree with theory. The increase in optical efficiency indicates that laser material thermal loading can be substantially reduced.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  2. R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
    [CrossRef]
  3. M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
    [CrossRef]
  4. R. H. Harada, C. K. Suzuki, “An injection laser pump for Nd3+ doped hosts,” Appl. Opt. 4, 225–227 (1965).
    [CrossRef]
  5. L. J. Rosenkrantz, “GaAs diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
    [CrossRef]
  6. M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
    [CrossRef]
  7. W. Koechner, Solid-State Laser Engineering, 4th. ed. (Springer-Verlag, Berlin, 1995), p. 93.
  8. J. T. Verdeyen, Laser Electronics, 2nd .ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.
  9. C. A. Wang, S. H. Groves, “New materials for diode laser pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 942–951 (1992).
    [CrossRef]
  10. H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
    [CrossRef]
  11. D. Brown, “Ultra high-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
  12. M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.
  13. Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers in high power: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
    [CrossRef]

1999 (1)

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers in high power: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

1997 (1)

D. Brown, “Ultra high-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).

1993 (1)

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

1992 (1)

C. A. Wang, S. H. Groves, “New materials for diode laser pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 942–951 (1992).
[CrossRef]

1988 (1)

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

1976 (1)

M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
[CrossRef]

1972 (1)

L. J. Rosenkrantz, “GaAs diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

1968 (1)

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

1965 (1)

1963 (1)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

Brown, D.

D. Brown, “Ultra high-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).

Byer, R. L.

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Cao, J. P.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Chen, Y. F.

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers in high power: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

Fan, T. Y.

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Groves, S. H.

C. A. Wang, S. H. Groves, “New materials for diode laser pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 942–951 (1992).
[CrossRef]

Harada, R. H.

Jackel, S.

M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.

Kimura, T.

M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th. ed. (Springer-Verlag, Berlin, 1995), p. 93.

Laliberte, B. M.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Lavi, R.

M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.

Lebiush, E.

M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.

Minns, R. A.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Newman, R.

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

Otsuka, K.

M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
[CrossRef]

Po, H.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Robinson, R. F.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Rockney, B. H.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Rosenkrantz, L. J.

L. J. Rosenkrantz, “GaAs diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

Ross, M.

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Saruwatari, M.

M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
[CrossRef]

Suzuki, C. K.

Tricca, R. R.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 2nd .ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.

Wang, C. A.

C. A. Wang, S. H. Groves, “New materials for diode laser pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 942–951 (1992).
[CrossRef]

Winik, M.

M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.

Zhang, Y. H.

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Saruwatari, T. Kimura, K. Otsuka, “Miniaturized CW LiNdP4O12 laser pumped with a semiconductor laser,” Appl. Phys. Lett. 29, 291–293 (1976).
[CrossRef]

Electron. Lett. (1)

H. Po, J. P. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, Y. H. Zhang, “High power neodymium-doped single transverse mode fiber laser,” Electron. Lett. 29, 1500–1501 (1993).
[CrossRef]

IEEE J. Quantum Electron. (4)

D. Brown, “Ultra high-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

C. A. Wang, S. H. Groves, “New materials for diode laser pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 942–951 (1992).
[CrossRef]

Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers in high power: influence of thermal fracture,” IEEE J. Quantum Electron. 35, 234–239 (1999).
[CrossRef]

J. Appl. Phys. (2)

R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34, 437 (1963).
[CrossRef]

L. J. Rosenkrantz, “GaAs diode-pumped Nd:YAG laser,” J. Appl. Phys. 43, 4603–4605 (1972).
[CrossRef]

Proc. IEEE (1)

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Other (3)

M. Winik, E. Lebiush, R. Lavi, S. Jackel, “Temperature and wavelength insensitive miniature diode-end-pumped Nd:YAG laser,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CMC5.

W. Koechner, Solid-State Laser Engineering, 4th. ed. (Springer-Verlag, Berlin, 1995), p. 93.

J. T. Verdeyen, Laser Electronics, 2nd .ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Nd:YAG relevant energy level diagram with schematic description of traditional and direct pumping.

Fig. 2
Fig. 2

R2 absorption spectrum of Nd:YAG (doping of 1.1 at. %) at room temperature.

Fig. 3
Fig. 3

Upper lasing level absorption spectra of Nd:YVO4 (doping of 1 at. %), for c (circles) and a (triangles) polarizations at room temperature.

Fig. 4
Fig. 4

Schematic of the Ti:sapphire-pumped Nd:YAG oscillator setup.

Fig. 5
Fig. 5

Nd:YAG cw performance for R2 direct pumping (triangle) and band (traditional) pumping, for a 95% output coupler. P in is the pump power just inside the gain medium of the pump face.

Fig. 6
Fig. 6

Nd:YVO4 cw performance for direct pumping (square) and band (traditional) pumping at 805 nm (triangles) and 800 nm (circles) for a 95% output coupler. P in is the pump power just inside the gain medium of the pump face.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pout=ηslopePin-Pth,
ηslopeλ1ηslopeλ2=ηsλ1ηsλ2ηqλ1ηqλ2=λ1λ2ηqλ1ηqλ2.
Pthλ1Pthλ2=ηslopeλ2ηslopeλ1.
PH2PH1ν2-νLν1-νL,

Metrics