Abstract

The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm × 1.2 mm, with a spatial sampling of 1100 × 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Robota, U. Lenhof, “Unscharfe Logik zur Beurteilung gehonter Zylinderlaufflächen von Verbrennungsmotoren,” in Honen in Forschung und industrieller Anwendung, E. Westkämper, ed. (Vulkan-Verlag, Essen, Germany, 1995), pp. 10/1–10/17.
  2. D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
    [CrossRef]
  3. U. Breitmeier, “Lasermesstechnik zur Oberflächen-Qualitätskontrolle,” Laser Optoelektron. 24(2), 48–53 (1992).
  4. K. Leonhardt, K.-H. Rippert, H. J. Tiziani, “Optische Mikroprofilometrie und Rauheitsmessung,” Tech. Messen. 54, 243–252 (1987).
  5. H.-G. Kapitza, “Konfokale Laserscan-Mikroskopie zur optischen Vermessung der Mikrotopographie von Oberflächen und Schichten,” Tech. Messen. 63, 136–141 (1996).
  6. H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
    [CrossRef]
  7. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  8. P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  9. D. J. Aziz, “Interferometric measurement of surface roughness in engine cylinder walls,” Opt. Eng. 37, 1429–1434 (1998).
    [CrossRef]
  10. R. Windecker, H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
    [CrossRef]
  11. K. Leonhardt, U. Droste, H. J. Tiziani, “Microshape and rough-surface analysis by fringe projection,” Appl. Opt. 33, 7477–7488 (1994).
    [CrossRef] [PubMed]
  12. R. Windecker, H. J. Tiziani, “Topometry of technical and biological objects by fringe projection,” Appl. Opt. 34, 3644–3650 (1995).
    [CrossRef] [PubMed]
  13. R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
    [CrossRef]
  14. H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
    [CrossRef]
  15. R. Windecker, H. J. Tiziani, “A robust and accurate semispatial phase evaluation algorithm,” Appl. Opt. 34, 7321–7326 (1995).
    [CrossRef] [PubMed]
  16. G. Frankowski, “Optisches 3D-Messsystem zur Mikroprofil- und Rauheitsmessung,” Feinwerktech. Messtech. 106(9), 612–615 (1998).
  17. M. Takeda, K. Mutoh, “Fourier-tranform profilometryfor the automatic measurement of 3-D object shape,” Appl. Opt. 34, 3977–3982 (1983).
    [CrossRef]
  18. J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).
  19. J. Schmit, K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649 (1996).
    [CrossRef] [PubMed]
  20. R. Windecker, S. Franz, H. J. Tiziani, “Optical roughness measurement with fringe projection,” Appl. Opt. 38, 2837–2842 (1999).
    [CrossRef]
  21. K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

1999 (2)

R. Windecker, H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

R. Windecker, S. Franz, H. J. Tiziani, “Optical roughness measurement with fringe projection,” Appl. Opt. 38, 2837–2842 (1999).
[CrossRef]

1998 (3)

G. Frankowski, “Optisches 3D-Messsystem zur Mikroprofil- und Rauheitsmessung,” Feinwerktech. Messtech. 106(9), 612–615 (1998).

D. J. Aziz, “Interferometric measurement of surface roughness in engine cylinder walls,” Opt. Eng. 37, 1429–1434 (1998).
[CrossRef]

H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

1997 (3)

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

1996 (2)

H.-G. Kapitza, “Konfokale Laserscan-Mikroskopie zur optischen Vermessung der Mikrotopographie von Oberflächen und Schichten,” Tech. Messen. 63, 136–141 (1996).

J. Schmit, K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649 (1996).
[CrossRef] [PubMed]

1995 (3)

1994 (1)

1993 (1)

1992 (1)

U. Breitmeier, “Lasermesstechnik zur Oberflächen-Qualitätskontrolle,” Laser Optoelektron. 24(2), 48–53 (1992).

1987 (1)

K. Leonhardt, K.-H. Rippert, H. J. Tiziani, “Optische Mikroprofilometrie und Rauheitsmessung,” Tech. Messen. 54, 243–252 (1987).

1983 (1)

M. Takeda, K. Mutoh, “Fourier-tranform profilometryfor the automatic measurement of 3-D object shape,” Appl. Opt. 34, 3977–3982 (1983).
[CrossRef]

Aziz, D. J.

D. J. Aziz, “Interferometric measurement of surface roughness in engine cylinder walls,” Opt. Eng. 37, 1429–1434 (1998).
[CrossRef]

Breitmeier, U.

U. Breitmeier, “Lasermesstechnik zur Oberflächen-Qualitätskontrolle,” Laser Optoelektron. 24(2), 48–53 (1992).

Caber, P. J.

Creath, K.

de Groot, P.

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Deck, L.

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Dong, W. P.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Droste, U.

Fleischer, M.

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Frankowski, G.

G. Frankowski, “Optisches 3D-Messsystem zur Mikroprofil- und Rauheitsmessung,” Feinwerktech. Messtech. 106(9), 612–615 (1998).

Franz, S.

Gerber, J.

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Huntley, J. M.

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

Jordan, H.-J.

H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Kapitza, H.-G.

H.-G. Kapitza, “Konfokale Laserscan-Mikroskopie zur optischen Vermessung der Mikrotopographie von Oberflächen und Schichten,” Tech. Messen. 63, 136–141 (1996).

Kowarschik, R.

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Kühmstedt, P.

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Lenhof, U.

A. Robota, U. Lenhof, “Unscharfe Logik zur Beurteilung gehonter Zylinderlaufflächen von Verbrennungsmotoren,” in Honen in Forschung und industrieller Anwendung, E. Westkämper, ed. (Vulkan-Verlag, Essen, Germany, 1995), pp. 10/1–10/17.

Leonhardt, K.

K. Leonhardt, U. Droste, H. J. Tiziani, “Microshape and rough-surface analysis by fringe projection,” Appl. Opt. 33, 7477–7488 (1994).
[CrossRef] [PubMed]

K. Leonhardt, K.-H. Rippert, H. J. Tiziani, “Optische Mikroprofilometrie und Rauheitsmessung,” Tech. Messen. 54, 243–252 (1987).

Luo, N.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Mainsah, E.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Mathia, T.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Mutoh, K.

M. Takeda, K. Mutoh, “Fourier-tranform profilometryfor the automatic measurement of 3-D object shape,” Appl. Opt. 34, 3977–3982 (1983).
[CrossRef]

Notni, G.

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Rippert, K.-H.

K. Leonhardt, K.-H. Rippert, H. J. Tiziani, “Optische Mikroprofilometrie und Rauheitsmessung,” Tech. Messen. 54, 243–252 (1987).

Robota, A.

A. Robota, U. Lenhof, “Unscharfe Logik zur Beurteilung gehonter Zylinderlaufflächen von Verbrennungsmotoren,” in Honen in Forschung und industrieller Anwendung, E. Westkämper, ed. (Vulkan-Verlag, Essen, Germany, 1995), pp. 10/1–10/17.

Saldner, H. O.

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

Schmit, J.

Schreiber, W.

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Stout, K. J.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Sullivan, P. J.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Takeda, M.

M. Takeda, K. Mutoh, “Fourier-tranform profilometryfor the automatic measurement of 3-D object shape,” Appl. Opt. 34, 3977–3982 (1983).
[CrossRef]

Tiziani, H.

H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Tiziani, H. J.

Wegner, M.

H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Whitehouse, D. J.

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

Windecker, R.

Zahouani, H.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

Appl. Opt. (7)

Feinwerktech. Messtech. (1)

G. Frankowski, “Optisches 3D-Messsystem zur Mikroprofil- und Rauheitsmessung,” Feinwerktech. Messtech. 106(9), 612–615 (1998).

J. Mod. Opt. (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Laser Optoelektron. (1)

U. Breitmeier, “Lasermesstechnik zur Oberflächen-Qualitätskontrolle,” Laser Optoelektron. 24(2), 48–53 (1992).

Meas. Sci. Technol. (2)

D. J. Whitehouse, “Surface metrology,” Meas. Sci. Technol. 8, 955–972 (1997).
[CrossRef]

H.-J. Jordan, M. Wegner, H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142–1151 (1998).
[CrossRef]

Opt. Eng. (4)

D. J. Aziz, “Interferometric measurement of surface roughness in engine cylinder walls,” Opt. Eng. 37, 1429–1434 (1998).
[CrossRef]

R. Windecker, H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng. 38, 1081–1087 (1999).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

Tech. Messen. (2)

K. Leonhardt, K.-H. Rippert, H. J. Tiziani, “Optische Mikroprofilometrie und Rauheitsmessung,” Tech. Messen. 54, 243–252 (1987).

H.-G. Kapitza, “Konfokale Laserscan-Mikroskopie zur optischen Vermessung der Mikrotopographie von Oberflächen und Schichten,” Tech. Messen. 63, 136–141 (1996).

Other (3)

A. Robota, U. Lenhof, “Unscharfe Logik zur Beurteilung gehonter Zylinderlaufflächen von Verbrennungsmotoren,” in Honen in Forschung und industrieller Anwendung, E. Westkämper, ed. (Vulkan-Verlag, Essen, Germany, 1995), pp. 10/1–10/17.

K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani, “The development of methods for the characterisation of roughness in three dimensions,” (Commission of the European Communities, London, 1993).

J. Gerber, P. Kühmstedt, R. Kowarschik, G. Notni, W. Schreiber, “Three-coordinate measuring system with structured light,” in Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, V. V. Varadan, ed., Proc. SPIE2342, 41–49 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Single-aperture configuration for telecentric microscopic fringe projection. The orders -1, 0, and +1 of the grating spectrum pass through entrance pupil EP a distance d. Angle of incidence β is enclosed by the optical axis and the geometric optically described beam of the 0 spectrum order, refracted by microscope objectives MO. Note the sinus condition.

Fig. 2
Fig. 2

Height step h introduces optical path difference OPD = AC¯ + CD¯- AB¯. This OPD leads to fringe displacement Δx = h/2 sin β.

Fig. 3
Fig. 3

Schematic diagram of the optical setup.

Fig. 4
Fig. 4

Photograph of the setup placed on a holder. The front is cut away to show the interior. A two-axis translation/one-axis rotation stage is needed for industrial use.

Fig. 5
Fig. 5

3-D topography of the measurement of a calibration standard. The field of view is 1.2 mm × 0.8 mm. The depth values at various positions are given in Table 1.

Fig. 6
Fig. 6

Cross section through the measurement of the calibration standard.

Fig. 7
Fig. 7

3-D topography of a honed cylinder wall of a truck engine and some 3-D roughness parameters. Because these roughness are calculated from area measurements, their parameters are labeled S instead of with the commonly used R. Tilt and curvature were removed.

Fig. 8
Fig. 8

Cross section through the topography of Fig. 7 along the y axis.

Fig. 9
Fig. 9

Gray-scale-coded topography of a laser-honed cylinder wall of a truck engine and some 3-D roughness parameters. Labels S have been used as in Fig. 7.

Fig. 10
Fig. 10

Spectral power distribution of the topography of Fig. 9.

Fig. 11
Fig. 11

Honed surface, including some small, typical defects.

Fig. 12
Fig. 12

Detail from Fig. 11. Smear from one groove into another.

Fig. 13
Fig. 13

Detail from Fig. 11. Formation of a burr along the grooves.

Fig. 14
Fig. 14

Detail from Fig. 11. Area enclosed by oval, shaving pressed into a groove. Circled area, interruption of the cutting line.

Fig. 15
Fig. 15

Cylinder liner surface consisting of an aluminum matrix with embossed silicon crystals (flattened field).

Fig. 16
Fig. 16

Cross section through the topography of Fig. 15.

Tables (2)

Tables Icon

Table 1 Measured Depths of the Grooves and Their Deviation from the Calibration Standard

Tables Icon

Table 2 Mean Values of Six Roughness Standards and the Deviation from Them

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ix, y=I01+2c2+4c cos Φ+2c2 cos 2Φ,
Φx, y=2πpx+2hx, ysin β,
Φx, y=arctan5I2-15I4+11I6-I8I1-11I3+15I5-5I7,
hx, y=pΦx, y2π sinβ.
Ra=1Ni=1N |hi|,

Metrics