Abstract

Fiber-optic chemical sensing has been demonstrated with a side-polished single-mode optical fiber, evanescently coupled to chemically sensitive Langmuir–Blodgett (LB) overlay waveguides. The sensors exhibit a channel-dropping response centered on a wavelength that is dependent on the thickness and the refractive index of the overlay waveguide. It has been shown that pH-sensitive organic dyes proved to be suitable materials for the formation of an overlay waveguide whereas LB deposition provides the required thickness control. A theoretical model of the sensor response, based on the Kramers–Kronig relations and phase matching of the guided modes within the optical fiber and overlay waveguide, shows good agreement with experimental results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lieberman, “Recent progress in intrinsic fibre-optic chemical sensing II,” Sens. Actuators B 11, 43–55 (1993).
    [CrossRef]
  2. H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-µm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
    [CrossRef] [PubMed]
  3. B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
    [CrossRef]
  4. R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
    [CrossRef]
  5. D. Flannery, S. W. James, R. P. Tatam, G. J. Ashwell, “pH sensor using Langmuir–Blodgett overlays on polished optical fibres,” Opt. Lett. 22, 567–569 (1997).
    [CrossRef] [PubMed]
  6. R. B. Charters, S. E. Staines, R. P. Tatam, “In-line fiber-optic components using Langmuir–Blodgett films,” Opt. Lett. 19, 2036–2038 (1994).
    [CrossRef] [PubMed]
  7. V. Ramaswamy, “Propagation in asymmetrical anisotropic film waveguides,” Appl. Opt. 13, 1363–1371 (1974).
    [CrossRef] [PubMed]
  8. C. D. Hussey, J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24, 805–807 (1988).
    [CrossRef]
  9. O. G. Leminger, R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements,” J. Lightwave Technol. LT-3, 864–867 (1985).
    [CrossRef]
  10. M. C. Petty, Langmuir–Blodgett films (Cambridge U. Press, Cambridge, England, 1996).
  11. R. A. Potyrailo, V. P. Ruddy, G. M. Hieftje, “Kramers–Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers,” Appl. Opt. 35, 4102–4111 (1996).
    [CrossRef] [PubMed]
  12. J. I. Steinfeld, An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1985).
  13. E. Kreyszig, “Numerical analysis,” in Instructor’s Manual for Advanced Engineering Mathematics, E. Kreyszig, ed., 5th ed. (Wiley, New York, 1983), pp. 788–790.
  14. A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
    [CrossRef]

1997 (1)

1996 (1)

1994 (1)

1993 (1)

R. A. Lieberman, “Recent progress in intrinsic fibre-optic chemical sensing II,” Sens. Actuators B 11, 43–55 (1993).
[CrossRef]

1992 (1)

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

1990 (1)

R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

1988 (1)

C. D. Hussey, J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24, 805–807 (1988).
[CrossRef]

1987 (2)

H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-µm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
[CrossRef] [PubMed]

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
[CrossRef]

1985 (1)

O. G. Leminger, R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements,” J. Lightwave Technol. LT-3, 864–867 (1985).
[CrossRef]

1974 (1)

Ashwell, G. J.

Blyer, L. L.

R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Cassidy, S.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Charters, R. B.

Cohen, L. G.

R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

Crisp, I.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Culshaw, B.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Flannery, D.

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
[CrossRef]

Hieftje, G. M.

Hussey, C. D.

C. D. Hussey, J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24, 805–807 (1988).
[CrossRef]

James, S. W.

Kreyszig, E.

E. Kreyszig, “Numerical analysis,” in Instructor’s Manual for Advanced Engineering Mathematics, E. Kreyszig, ed., 5th ed. (Wiley, New York, 1983), pp. 788–790.

Leminger, O. G.

O. G. Leminger, R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements,” J. Lightwave Technol. LT-3, 864–867 (1985).
[CrossRef]

Lieberman, R. A.

R. A. Lieberman, “Recent progress in intrinsic fibre-optic chemical sensing II,” Sens. Actuators B 11, 43–55 (1993).
[CrossRef]

R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

McGhee, A.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Minelly, J. D.

C. D. Hussey, J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24, 805–807 (1988).
[CrossRef]

Muhammad, F.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Murray, S.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Norris, J.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Petty, M. C.

M. C. Petty, Langmuir–Blodgett films (Cambridge U. Press, Cambridge, England, 1996).

Pinchbeck, D.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Potyrailo, R. A.

Ramaswamy, V.

Ruddy, V. P.

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
[CrossRef]

Staines, S. E.

Steinfeld, J. I.

J. I. Steinfeld, An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1985).

Stewart, G.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Tai, H.

Tanaka, H.

Tatam, R. P.

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
[CrossRef]

Van Ewyk, R.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Wilkinson, M.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Williams, D.

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

Yoshino, T.

Zengerle, R.

O. G. Leminger, R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements,” J. Lightwave Technol. LT-3, 864–867 (1985).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

C. D. Hussey, J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24, 805–807 (1988).
[CrossRef]

B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, A. McGhee, “Evanescent wave methane gas detection using optical fibers,” Electron. Lett. 28, 2232–2234 (1992).
[CrossRef]

J. Lightwave Technol. (3)

R. A. Lieberman, L. L. Blyer, L. G. Cohen, “A distributed fibre optic sensor based on cladding fluorescence,” J. Lightwave Technol. 8, 212–220 (1990).
[CrossRef]

A. K. Ghatak, K. Thyagarajan, M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. LT-5, 660–667 (1987).
[CrossRef]

O. G. Leminger, R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements,” J. Lightwave Technol. LT-3, 864–867 (1985).
[CrossRef]

Opt. Lett. (3)

Sens. Actuators B (1)

R. A. Lieberman, “Recent progress in intrinsic fibre-optic chemical sensing II,” Sens. Actuators B 11, 43–55 (1993).
[CrossRef]

Other (3)

M. C. Petty, Langmuir–Blodgett films (Cambridge U. Press, Cambridge, England, 1996).

J. I. Steinfeld, An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1985).

E. Kreyszig, “Numerical analysis,” in Instructor’s Manual for Advanced Engineering Mathematics, E. Kreyszig, ed., 5th ed. (Wiley, New York, 1983), pp. 788–790.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of a fiber-optic chemical sensor.

Fig. 2
Fig. 2

Experimental apparatus: WL, white-light source; MC, mechanical chopper; P, polarizer; L, 20× microscope objective; SOPC, state of polarization controller.

Fig. 3
Fig. 3

Molecular structure of the substituted merocyanine dye.

Fig. 4
Fig. 4

Absorption spectra of a 50-layer film of the merocyanine dye before and after exposure to HCl vapor.

Fig. 5
Fig. 5

Normalized TM transmission of the sensor after exposure to HCl vapor and an ammonia solution.

Fig. 6
Fig. 6

Normalized TM sensor transmission in solutions of, from left to right, pH 11.60, 11.83, 12.09, 12.39, 12.64, 12.80, 13.02, and 13.23.

Fig. 7
Fig. 7

Plot of the absorption spectrum of 50 layers of the merocyanine dye and the Gaussian fit derived from Microcal Origin 3D.

Fig. 8
Fig. 8

Plot of the absorption spectrum created by the fit in Fig. 7 and its corresponding material dispersion curve as calculated by the Kramers–Kronig model, assuming that n r = 1.4.

Fig. 9
Fig. 9

Plot showing shifts in the absorption spectra of 50 layers of the merocyanine dye in solutions of pH 11.56, 11.98, 12.60, and 13.23.

Fig. 10
Fig. 10

Material dispersion curves calculated from the absorptions shown in Fig. 9.

Fig. 11
Fig. 11

Refractive index of ammonia solutions of pH 11.56, 11.98, 12.60, and 13.23 measured at wavelengths of 745, 747.5, 757.5, and 775 nm, respectively.

Fig. 12
Fig. 12

Theoretical dispersion curves of the overlay waveguide in solutions of, from left to right, pH 11.56, 11.98, 12.60, and 13.23. The dotted line represents the dispersion of the optical fiber.

Fig. 13
Fig. 13

Plot of measured (circles) and predicted (squares) phase-matching wavelength versus ammonia solution pH.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2πdλmno2-neff21/2=Φs+Φcl,
ncomplex=nr+ini.
nrν=nr+2π0+sniss2-ν2ds,
niν=-2νπ P 0+nrss2-ν2ds,
ni=αλ/4π.
α=log10eA/l.

Metrics