Abstract

By propagating 500-fs pulses through 2.5 m of standard fiber followed by 2 m of dispersion-shifted fiber, we generated >200 nm of spectral continuum between 1430 and 1630 nm, which is flat to less than ±0.5 dB over more than 60 nm. Pulses obtained by filtering the continuum show no increase in timing jitter over the source laser and are pedestal free to >28 dB, indicating excellent stability and coherence. We show that the second- and third-order dispersions of the continuum fiber and self-phase modulation are primarily responsible for the continuum generation and spectral shaping and found close agreement between simulations and experiments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription