Abstract

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH4 and H2O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH4 (in the 1.653-µm region) and H2O (in the 1.393-µm region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of ∼1 to ∼31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uehara, H. Tai, “Remote detection of methane with a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
    [CrossRef] [PubMed]
  2. D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  3. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
    [CrossRef]
  4. P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
    [CrossRef]
  5. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  6. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
    [CrossRef]
  7. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983).
    [CrossRef] [PubMed]
  8. C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
    [CrossRef]
  9. C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992).
    [CrossRef]
  10. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb–salt diode laser,” Appl. Opt. 26, 2558–2572 (1987).
    [CrossRef] [PubMed]
  11. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
    [CrossRef] [PubMed]
  12. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–475 (1994).
    [CrossRef] [PubMed]
  13. World Meteorological Organization, “Stratospheric processes and their role in climate,” (World Meteorological Organization, Geneva, 1998).
  14. B. Bobin, “Interprétation de la bande harmonique 2ν3 du méthane 12CH4,” J. Phys. (Paris) 33, 345–352 (1972).
    [CrossRef]
  15. L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
    [CrossRef]
  16. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
    [CrossRef] [PubMed]
  17. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 29, 3240–3249 (1995).
    [CrossRef]
  18. L. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  19. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, San Diego, Calif., 1996), p. 207.
  20. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  21. A. S. Pine, “N2 and Ar broadening and line-mixing in the P and R branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57, 157–176 (1997).
    [CrossRef]
  22. D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  23. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  24. G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985).
    [CrossRef]

1997 (1)

A. S. Pine, “N2 and Ar broadening and line-mixing in the P and R branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57, 157–176 (1997).
[CrossRef]

1995 (2)

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 29, 3240–3249 (1995).
[CrossRef]

1994 (3)

1992 (4)

C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992).
[CrossRef]

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

K. Uehara, H. Tai, “Remote detection of methane with a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

1991 (1)

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

1989 (1)

1988 (2)

1987 (2)

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb–salt diode laser,” Appl. Opt. 26, 2558–2572 (1987).
[CrossRef] [PubMed]

1985 (1)

G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985).
[CrossRef]

1983 (1)

1982 (1)

1972 (1)

B. Bobin, “Interprétation de la bande harmonique 2ν3 du méthane 12CH4,” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

1965 (1)

1964 (1)

Aizawa, M.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Allen, M. G.

Benner, D. C.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Bobin, B.

B. Bobin, “Interprétation de la bande harmonique 2ν3 du méthane 12CH4,” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Cancio, P.

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

Carleton, K. L.

Cassidy, D. T.

Chackerian, C.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Champion, J. P.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Chave, R. G.

Corsi, C.

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

Davis, S. J.

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gallagher, T. F.

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Herriott, D. R.

Hilico, J. C.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Hinkley, E. D.

Hovde, D. C.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Jouvard, J. M.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Kendall, J.

Kessler, W. J.

Kogelnik, H.

Kompfer, R.

Loete, M.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Margolis, J. S.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Martinelli, R. U.

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

Maruyama, A.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

May, R. D.

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–475 (1994).
[CrossRef] [PubMed]

C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

Menna, R. J.

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

Menzies, R. T.

Moreau, G.

G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985).
[CrossRef]

Nagai, H.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Okamoto, T.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Otis, C. E.

Palombo, D. A.

Pavone, F. S.

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Pine, A. S.

A. S. Pine, “N2 and Ar broadening and line-mixing in the P and R branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57, 157–176 (1997).
[CrossRef]

Reid, J.

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Riris, H.

Robert, C.

G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Salby, M. L.

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, San Diego, Calif., 1996), p. 207.

Schulte, H. J.

Shimose, Y.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Silver, J. A.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sonnenfroh, D. M.

Stanton, A. C.

Tai, H.

Tarrago, G.

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

Tate, D. A.

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Trimble, C. A.

Uehara, K.

Wang, L.

Webster, C. R.

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–475 (1994).
[CrossRef] [PubMed]

C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983).
[CrossRef] [PubMed]

Appl. Opt. (11)

D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
[CrossRef]

D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185–1190 (1982).
[CrossRef] [PubMed]

R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb–salt diode laser,” Appl. Opt. 26, 2558–2572 (1987).
[CrossRef] [PubMed]

D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 29, 3240–3249 (1995).
[CrossRef]

K. Uehara, H. Tai, “Remote detection of methane with a 1.66-µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–475 (1994).
[CrossRef] [PubMed]

R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

Geophys. Res. Lett. (1)

C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Infrared Phys. Technol. (1)

P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995).
[CrossRef]

J. Geophys. Res. (1)

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O and CO2 in the 40-26 km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

J. Opt. (Paris) (1)

G. Moreau, C. Robert, “Etude des variations d’un faisceau lumineux dans une cellule à passages multiples,” J. Opt. (Paris) 16, 177–183 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) (1)

B. Bobin, “Interprétation de la bande harmonique 2ν3 du méthane 12CH4,” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

L. R. Brown, J. S. Margolis, J. P. Champion, J. C. Hilico, J. M. Jouvard, M. Loete, C. Chackerian, G. Tarrago, D. C. Benner, “Methane and its isotopes: current status and prospects for improvement,” J. Quant. Spectrosc. Radiat. Transfer 48, 617–628 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

A. S. Pine, “N2 and Ar broadening and line-mixing in the P and R branches of the ν3 band of CH4,” J. Quant. Spectrosc. Radiat. Transfer 57, 157–176 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Other (2)

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, San Diego, Calif., 1996), p. 207.

World Meteorological Organization, “Stratospheric processes and their role in climate,” (World Meteorological Organization, Geneva, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the detection principle of the SDLA. Every second, four spectra are recorded simultaneously, with 512 sample points on each. The reference spectrum is used for wavelength calibration. Channels A and B are used for the intensity calibration process. The atmospheric absorption is extracted from the differential analogical signal A - B. Taking the difference allows the sloping background to be removed and the complete dynamic range of the measurements (16-digit sampler) to be used for the weak atmospheric absorption signal. See text for more details.

Fig. 2
Fig. 2

Atmospheric methane spectrum recorded at 6.9 km during the SDLA balloon test flight on 23 October 1998. As explained for Fig. 1, a methane measurement consists of four spectra registered simultaneously. (a) Reference spectrum recorded at the output of a reference cell filled with 40 Torr of methane; it features the 2 ν 3, R(3) transition of CH4 at 1.653 µm (6046.9 cm-1). (b) Signals A and B recorded at the input (B) and the output (A) of the optical multipass cell open to the atmosphere (Fig. 1). The sloping background is the response in amplitude of the laser diode when the driving current is ramped to tune the frequency. Channel A has a very weak absorption information (∼0.05% of the laser beam is absorbed in the cell at 25 km). (c) Analogical difference A - B taken to extract the absorption information from channel A. The value of gain G applied before digitization is 16 × 10. The atmospheric line shape of the CH4 multiplet is collisionally broadened compared with the reference spectrum. 1 mbar = 1 hPa = 100 Pa.

Fig. 3
Fig. 3

Atmospheric water-vapor spectrum recorded at 22.6 km during the SDLA balloon flight at mid-latitudes (in southern France) on 10 May 1999. (a) The reference spectrum, (b) channels A and B, and (c) differential signal S Δ (see Fig. 2 for more details). The spectra feature the ν 1 + ν 3, P(3) transition of water vapor at 7181.17 cm-1. At 22 km, ∼2% of the light is absorbed in the cell (20 times as much as for methane absorption at the same altitude).

Fig. 4
Fig. 4

Retrieval of molecular absorption A(σ). (a) A methane absorption spectrum recorded at 17.5 km during the balloon test flight of SDLA on 23 October 1998. The S Δ differential channel is plotted against the misbalancing term G δerr (an offset has been introduced for clarity). The misbalancing term was extracted from the S Δ channel by a 3-deg polynomial interpolation on the zero-absorption regions on both parts of the spectral interval. (b) Knowing the G δerr term, channel A, and gain G, one can retrieve molecular absorption A(σ) by using Eq. (2). The wavelength scaling was carried out by use of the reference spectrum. The methane mixing ratio can then be retrieved from the molecular absorption by the Beer–Lambert law. At 17.5 km, the molecular absorption for the 2 ν 3, R(3) multiplet of CH4 is ∼0.25% and the linewidth is ∼0.037 cm-1 (FWHM). The R(3) multiplet consists of three individual lines that are not resolved at atmospheric pressure, one of which has a stronger line strength that gives a typical form to the line shape.

Fig. 5
Fig. 5

Differential signal S Δ compared with the A digitized - B digitized signal for two methane atmospheric spectra recorded at 6.9 and 28.1 km during the SDLA test flight. The effect of the limited dynamic range of the measurements can clearly be seen on the spectrum at 28 km. Taking the analogical difference before digitizing (S Δ channel) permits the full dynamic range to be used for the atmospheric information. The spectra are recorded in 10 ms each, 40 successive elementary spectra are coadded, and the spectra are then sampled over 16 digits. At 6 km, ∼0.4% of the laser beam is absorbed by methane (on a 56-m optical path length); at 28 km, ∼0.02% is absorbed.

Fig. 6
Fig. 6

Schematic of the SDLA gondola. The SDLA is based on the use of a multipass cell open to the atmosphere. The optical path provided by the Herriott-type cell is 56 m. Two laser diodes devoted to CH4 and H2O monitoring are connected to the multipass cell by monomode silica optical fibers. A small Cassegrain telescope is used to simplify the injection and detection of both laser beams. The weight of the overall gondola is ∼100 kg; the height is ∼3 m.

Fig. 7
Fig. 7

Optical layout of the multipass cell. Two different laser diodes are simultaneously coupled to the optical cell by a small Cassegrain telescope. The principle of the injection detection for one laser diode is shown. Perpendicular to the figure plane, the same injection–detection scheme is used for the second laser diode. A and B relate to channels A and B of Fig. 2 (see text for more details). After entering the cell, the laser light produces a series of 28 reflex foci lying upon an ellipse on each mirror. The two ellipses, which correspond to the two laser beams, are perpendicular. Gold-coated spherical mirrors (radius, 1080 mm; diameter, 100 mm) are used for the Herriott-type multipass cell. The optical path length is 56 m. The weight of the overall optical module is ∼20 kg.

Fig. 8
Fig. 8

Atmospheric methane spectra recorded during the balloon test flight of SDLA on 23 October 1998 from Aire-sur-l’Adour (southern France). The 2 ν 3, R(3) multiplet of CH4 is recorded in 1-s intervals with a Sensors Unlimited laser diode at 1.653 µm. Differential channel S Δ is plotted with the corresponding reference spectrum. The Gδ err misbalancing term, obtained by the interpolation technique, was subtracted from the S Δ spectrum to demonstrate that the line basis is clearly defined. (a) Absorption spectrum at 3 km. The atmospheric line shape is strongly broadened by the collisional effects. (b) Absorption spectrum at 17 km. The line shape is typical of the multiplet R(3), which consists of three individual lines not resolved at atmospheric pressure. One of the lines has a stronger line strength. (c), (d) Spectra obtained at higher altitudes, where noise is more important. The line shape converges toward the Doppler profile.

Fig. 9
Fig. 9

Molecular absorption A(σ) as a function of altitude. The molecular absorption for the 2 ν 3, R(3) line of CH4 at 6046.95 cm-1 was retrieved from the atmospheric spectra by Eq. (2). Wavelength calibration was performed by use of the reference spectrum (see text for more details). Noise at 30 km is of the order of a few times 10-5; it can be improved by use of a numerical low-pass filter. The linewidth converges toward a pure Doppler profile when the altitude increases (∼0.12 cm-1 at 1.4 km to ∼0.03 cm-1 at 30.6 km). The absorption depth decreases from 0.32% at 1.4 km to 0.025% at 30.6 km (with a 56-m path length). Up to ∼12 km the absorption depth increases because of the reduction of collisional effects. Mixing ratios were retrieved by the full line shape iterative technique. Processing of the ∼4000 methane spectra recorded from ∼1- to ∼30-km altitude range during the balloon test flight is under way.

Fig. 10
Fig. 10

Simultaneous methane and water-vapor measurement performed during the flight of the SDLA at northern latitudes (in Sweden) on 23 February 1999. Both spectra were recorded within 1 s. The concentrations were retrieved from the molecular spectra by use of a full line-shape fitting technique (with Voigt modeling), the HITRAN database, and the corresponding in situ atmospheric pressure and temperature measurements.

Fig. 11
Fig. 11

Methane vertical concentration profile obtained during the flight of the SDLA in the Arctic vortex from Kiruna (in Sweden) on 23 February 1999. Approximately 800 spectra of the ∼5000 recorded during the ascent of the gondola have been processed. The concentrations were retrieved from the molecular spectra from a nonlinear least-squares fit to the spectral line shape, the HITRAN database, and the corresponding in situ pressure and temperature measurements. Complete processing of the ∼10,000 spectra obtained for both CH4 and H2O during the ascent and descent of the payload is under way.

Tables (1)

Tables Icon

Table 1 Simulated Fractional Absorption and Linewidth (FWHM) According to Altitude for the 2 ν 3, R(3) Transition of CH4 (at 6046.9 cm-1) and for the ν 1 + ν 3, P(3) Transition of H2O (at 7181.17 cm-1)a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SΔ=GATσ-B,
SΔ=Gδerr-GAAσ,
δerr=A-B.
Aσ=Gδerr-SΔGA.
Δσ10δmol,
GSΔA-Bif Aσ=0.
AσρmolNT, PL lines kvNTΦT, P, σ*δappσ,

Metrics