Abstract

Experimental results concerning the real-time hologram recording process in dichromated poly(vinyl alcohol) are presented. Self-enhancement, the increase in diffraction efficiency of the holographic gratings in the dark after recording, is also presented. The influence of the recording parameters (pH, exposure energy, dichromate concentration) on the self-enhancement gain is shown. Maximum gain was 6, and self-enhancement occurred during the 3 days following the exposure. The results and a model for the reduction of chromium ions corresponding to the formation of the grating are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lelièvre, J. J. A. Couture, “Dichromated polyvinyl alcohol films used as a novel polarization real-time holographic recording material,” Appl. Opt. 29, 4384–4390 (1990).
    [CrossRef] [PubMed]
  2. M. Barikani, E. Simova, M. Kavehrad, “Dicromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
    [CrossRef] [PubMed]
  3. M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
    [CrossRef]
  4. G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
    [CrossRef]
  5. G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
    [CrossRef]
  6. G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
    [CrossRef]
  7. M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical formation of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–10 (1998).
  8. J. C. Newell, L. Solymar, A. A. Ward, “Holograms in dichromated gelatin: real-time effects,” Appl. Opt. 24, 4460–4466 (1985).
    [CrossRef] [PubMed]
  9. T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
    [CrossRef]
  10. A. Ozols, “Self-enhancement of amplitude holograms recorded in additively colored KBr crystals,” Latv. J. Phys. Tech. Sci. 5, 45–52 (1979) (in Russian).
  11. M. Reinfelde, O. Salminen, P. Ketolainen, “Relaxation of elementary holographic gratings in As2S3 films at low diffraction efficiencies,” Opt. Lett. 17, 1085–1086 (1992).
    [CrossRef] [PubMed]
  12. A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
    [CrossRef]
  13. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–278 (1992).
    [CrossRef]
  14. R. Grzymala, T. Keinonen, “Self-enhancement of holographic gratings in dichromated gelatin and polyvinyl alcohol films,” Appl. Opt. 37, 6623–6625 (1998).
    [CrossRef]
  15. S. Caron, J. J. A. Couture, R. A. Lessard, “Real-time hologram reinforcement demonstrated by thionine/PVA photoreducible thin layers,” Appl. Opt. 29, 599–602 (1990).
    [CrossRef] [PubMed]
  16. D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
    [CrossRef]
  17. T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
    [CrossRef]
  18. P. Datta, B. R. Soller, “A study of photochemical reactions in a dichromated photoresist,” Photonics Sci. Eng. 23, 203–206 (1979).
  19. Richard D. Rallison, “Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation,” in Practical Holography XI and Holographic Materials III, S. A. Benton, J. Trout, eds., Proc. SPIE3011, 248–254 (1997).
    [CrossRef]

1998

1997

D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
[CrossRef]

1995

M. Barikani, E. Simova, M. Kavehrad, “Dicromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
[CrossRef] [PubMed]

M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
[CrossRef]

1994

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
[CrossRef]

1993

G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
[CrossRef]

1992

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–278 (1992).
[CrossRef]

M. Reinfelde, O. Salminen, P. Ketolainen, “Relaxation of elementary holographic gratings in As2S3 films at low diffraction efficiencies,” Opt. Lett. 17, 1085–1086 (1992).
[CrossRef] [PubMed]

1990

1988

T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
[CrossRef]

1985

1979

A. Ozols, “Self-enhancement of amplitude holograms recorded in additively colored KBr crystals,” Latv. J. Phys. Tech. Sci. 5, 45–52 (1979) (in Russian).

P. Datta, B. R. Soller, “A study of photochemical reactions in a dichromated photoresist,” Photonics Sci. Eng. 23, 203–206 (1979).

1973

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Barikani, M.

M. Barikani, E. Simova, M. Kavehrad, “Dicromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
[CrossRef] [PubMed]

M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
[CrossRef]

Bolte, M.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
[CrossRef]

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical formation of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–10 (1998).

Caron, S.

Changkakoti, R.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
[CrossRef]

Couture, J. J. A.

Datta, P.

P. Datta, B. R. Soller, “A study of photochemical reactions in a dichromated photoresist,” Photonics Sci. Eng. 23, 203–206 (1979).

Galcera, T.

T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Grzymala, R.

Jost, P.

D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
[CrossRef]

Jouan, X.

T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
[CrossRef]

Kavehrad, M.

M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
[CrossRef]

M. Barikani, E. Simova, M. Kavehrad, “Dicromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
[CrossRef] [PubMed]

Keinonen, T.

Ketolainen, P.

Lafond, C.

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical formation of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–10 (1998).

Lavielle, L.

D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
[CrossRef]

Lelièvre, S.

Lessard, R. A.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

S. Caron, J. J. A. Couture, R. A. Lessard, “Real-time hologram reinforcement demonstrated by thionine/PVA photoreducible thin layers,” Appl. Opt. 29, 599–602 (1990).
[CrossRef] [PubMed]

Lougnot, D. J.

D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–278 (1992).
[CrossRef]

Mailhot, G.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

Manivannan, G.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Newell, J. C.

Ozols, A.

A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
[CrossRef]

A. Ozols, “Self-enhancement of amplitude holograms recorded in additively colored KBr crystals,” Latv. J. Phys. Tech. Sci. 5, 45–52 (1979) (in Russian).

Pizzocaro, C.

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical formation of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–10 (1998).

Quick, C. R.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Rabson, T. A.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Rallison, Richard D.

Richard D. Rallison, “Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation,” in Practical Holography XI and Holographic Materials III, S. A. Benton, J. Trout, eds., Proc. SPIE3011, 248–254 (1997).
[CrossRef]

Reinfelde, M.

A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
[CrossRef]

M. Reinfelde, O. Salminen, P. Ketolainen, “Relaxation of elementary holographic gratings in As2S3 films at low diffraction efficiencies,” Opt. Lett. 17, 1085–1086 (1992).
[CrossRef] [PubMed]

Salminen, O.

A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
[CrossRef]

M. Reinfelde, O. Salminen, P. Ketolainen, “Relaxation of elementary holographic gratings in As2S3 films at low diffraction efficiencies,” Opt. Lett. 17, 1085–1086 (1992).
[CrossRef] [PubMed]

Simova, E.

M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
[CrossRef]

M. Barikani, E. Simova, M. Kavehrad, “Dicromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
[CrossRef] [PubMed]

Soller, B. R.

P. Datta, B. R. Soller, “A study of photochemical reactions in a dichromated photoresist,” Photonics Sci. Eng. 23, 203–206 (1979).

Solymar, L.

Tittel, F. K.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Turck, C.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–278 (1992).
[CrossRef]

Ward, A. A.

Appl. Opt.

J. Appl. Phys.

A. Ozols, O. Salminen, M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3333 (1994).
[CrossRef]

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

J. Photochem. Photobiol. A

T. Galcera, X. Jouan, M. Bolte, “Photoreactivity of chromium(iii) and chromium(vi)—acrylic acid systems: polymerization versus decarboxylation,” J. Photochem. Photobiol. A 45, 249–259 (1988).
[CrossRef]

J. Phys. Chem.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Latv. J. Phys. Tech. Sci.

A. Ozols, “Self-enhancement of amplitude holograms recorded in additively colored KBr crystals,” Latv. J. Phys. Tech. Sci. 5, 45–52 (1979) (in Russian).

Opt. Eng.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic recording materials,” Opt. Eng. 32, 671–675 (1993).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol for the real-time hologram recording: effect of humidity,” Opt. Mater. 4, 477–485 (1995).
[CrossRef]

Photonics Sci. Eng.

P. Datta, B. R. Soller, “A study of photochemical reactions in a dichromated photoresist,” Photonics Sci. Eng. 23, 203–206 (1979).

Pure Appl. Opt.

D. J. Lougnot, P. Jost, L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–244 (1997).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–278 (1992).
[CrossRef]

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–856 (1994).
[CrossRef]

Other

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical formation of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–10 (1998).

Richard D. Rallison, “Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation,” in Practical Holography XI and Holographic Materials III, S. A. Benton, J. Trout, eds., Proc. SPIE3011, 248–254 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup for the real-time hologram measurements. BS, beam splitter; LPSF, lens pinhole spatial filter.

Fig. 2
Fig. 2

Diffraction efficiency as a function of exposure time; (a) pH = 4.83,12 (b) pH = 8.13.

Fig. 3
Fig. 3

Diffraction efficiency during and after the exposure; (a) pH = 4.83,12 (b) pH = 8.13.

Fig. 4
Fig. 4

Diffraction efficiency during and after the exposure for different dichromate concentrations.

Fig. 5
Fig. 5

Difference in diffracted intensity during 3 days for different concentrations.

Fig. 6
Fig. 6

Diffraction efficiency some days after the recording; (a) pH = 4.83, (b) pH = 8.13.

Fig. 7
Fig. 7

Self-enhancement coefficient as a function of the time after recording for different dichromate concentrations.

Fig. 8
Fig. 8

Self-enhancement coefficient as a function of dichromate concentration.

Fig. 9
Fig. 9

Self-enhancement rate as a function of dichromate concentration.

Fig. 10
Fig. 10

Self-enhancement coefficient as a function of exposure energy; (a) pH = 4.83, (b) pH = 8.13.

Fig. 11
Fig. 11

Self-enhancement rate as a function of exposure energy.

Fig. 12
Fig. 12

Self-enhancement coefficient as a function of time.

Fig. 13
Fig. 13

Self-enhancement coefficient as a function of initial diffraction efficiency.

Fig. 14
Fig. 14

Reductions of dichromate ions during and after the exposure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ξ =η1/η0,
β =dξ/dt,

Metrics