Abstract

An optical frequency-domain interference microscope with a liquid-crystal Fabry–Perot interferometer as an optical frequency-scan device was developed for microscopic three-dimensional shape measurements. The proposed system can perform absolute measurement of the discontinuous surface profile of a microscopic object without use of mechanically moving components such as a piezoelectric transducer or a grating spectrometer. Experimental results are presented that demonstrate the validity of the principle.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Sommergren, “Optical heterodyne interferometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef]
  2. T. Dressel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef]
  3. J. P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996), pp. 221–271.
    [CrossRef]
  4. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of a diffuse object with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  5. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  6. J. Schwider, L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
    [CrossRef] [PubMed]
  7. T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).
  8. H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
    [CrossRef]
  9. S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [CrossRef] [PubMed]
  10. I. Yamaguchi, A. Yamamoto, S. Kuwata, “Speckle decorrelation in surface profilometry by wavelength scanning interferometry,” Appl. Opt. 37, 6721–6728 (1998).
    [CrossRef]
  11. K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  12. K. Hirabayshi, T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–313 (1993).
    [CrossRef]

1998

1997

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

1996

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

1994

1993

K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

K. Hirabayshi, T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–313 (1993).
[CrossRef]

1992

1982

1981

Barnes, T. H.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Dressel, T.

Eiju, T.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Fillard, J. P.

J. P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996), pp. 221–271.
[CrossRef]

Franze, B.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Haible, P.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Häusler, G.

Hirabayshi, K.

K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

K. Hirabayshi, T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–313 (1993).
[CrossRef]

Ina, H.

Kobayashi, S.

Kurokawa, T.

K. Hirabayshi, T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–313 (1993).
[CrossRef]

K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Kuwamura, S.

Kuwata, S.

Matsuda, K.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Schwider, J.

Sommergren, G. E.

Takeda, M.

Tiziani, H. J.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Tsuda, H.

K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Venzke, H.

Yamaguchi, I.

Yamamoto, A.

Yamamoto, H.

Zhou, L.

Appl. Opt.

J. Lightwave Technol.

K. Hirabayshi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

J. Mod. Opt.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

J. Opt. Soc. Am.

Liq. Cryst.

K. Hirabayshi, T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–313 (1993).
[CrossRef]

Opt. Lett.

Optik

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Other

J. P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996), pp. 221–271.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

LC-FPI structure.

Fig. 2
Fig. 2

Spectral power transmittance of LC-FPI. FSR, free spectral range.

Fig. 3
Fig. 3

Schematic diagram of spectral interference microscope. BS, beam splitter.

Fig. 4
Fig. 4

Experimental setup. DA Converter, digital-to-analog converter. BS, beam splitter.

Fig. 5
Fig. 5

LC-FPI device and 100 yen coin for size comparison.

Fig. 6
Fig. 6

(a) Spectrum of the light from the LED measured at the exit of the fiber and (b) spectrum of the light transmitted by the LC-FPI.

Fig. 7
Fig. 7

Variation of resonance wavelength of LC-FPI with applied voltage.

Fig. 8
Fig. 8

(a) Object with large height steps observed by the microscope without a reference beam (in micrometers.) (b) Schematic illustration of the object with two-fold height steps, which are 1.07 and 11.00 µm according to the contact stylus measurement.

Fig. 9
Fig. 9

Height distributions obtained by the proposed method.

Tables (1)

Tables Icon

Table 1 Comparison with Stylus Measurementa

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

TFσ; v=1-R21-R2+4R sin22πnvLσ,
σmv=m2nvL.
gx, y; v=Sσmvax, y+bx, ycos2πlx, yσmv,
σt=σmvt=σ0+αt,
gx, y; t=Sσtax, y+bx, y×cos2πfx, yt+ϕ0x, y,
fx, y=αlx, y,
ϕ0x, y=2πσ0lx, y.
gx, y; t=Sσtax, y+bx, y×cos2πlx, yσt.
Gx, y; f=Ax, y; f+Cx, y; f+C*x, y; -f,
Gx, y; f=gx, y; t,
Ax, y; f=ax, ySσt,
Cx, y; f=½bx, ySσt×exp2πilx, yσt,
cx, y; t=½bx, ySσtexp2πilx, yσt,
2πlx, yσt=tan-1cx, y; tcx, y; t,
Φx, y; t=2πlx, yσt.
t ΦxS, yS; t=2πlxS, ySddt σt,
t ΦxR, yR; t=2πlxR, yRddt σt.
ddt σt=14πhStΦxS, yS; t-ΦxR, yR; t.
ddt σt=14πhx, ytΦx, y; t-ΦxR, yR; t.
hx, y=hs tΦx, y; t-ΦxR, yR; ttΦxS, yS; t-ΦxR, yR; t,

Metrics