Abstract

We built a large-area domain-engineered pyroelectric radiometer with high spatial and spectral response uniformity that is an excellent primary transfer standard for measurements in the near- and the mid-infrared wavelength regions. The domain engineering consisted of inverting the spontaneous polarization over a 10-mm-diameter area in the center of a uniformly poled, 15.5 mm × 15.5 mm square, 0.25-mm-thick LiNbO3 plate. Gold black was used as the optical absorber on the detector surface, and an aperture was added to define the optically sensitive detector area. Our results indicate that we significantly reduced the acoustic sensitivity without loss of optical sensitivity. The detector noise equivalent power was not exceptionally low but was nearly constant for different acoustic backgrounds. In addition, the detector’s spatial-response uniformity variation was less than 0.1% across the 7.5-mm-diameter aperture, and reflectance measurements indicated that the gold-black coating was spectrally uniform within 2%, from 800 to 1800 nm. Other detailed evaluations of the detector include detector responsivity as a function of temperature, electrical frequency response, angular response, and field of view.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lehman, J. A. Aust, “Bicell pyroelectric optical detector made from a single LiNbO3 domain-reversed electret,” Appl. Opt. 37, 4210–4212 (1998).
    [CrossRef]
  2. W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1996).
    [CrossRef]
  3. L. Harris, R. McGinnies, B. M. Siegel, “The preparation and optical properties of gold blacks,” J. Opt. Soc. Am. 38, 582–589 (1948).
    [CrossRef]
  4. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.
  5. G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Advanced Fiber Communications Technologies, L. G. Kazovsky, ed., Commission Internationale de l’Éclairage, Proc. SPIE1479, 71–77 (1991).
  6. G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
    [CrossRef]
  7. A. L. Migdall, G. P. Eppeldauer, Spectroradiometric Detector Measurements: III. Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–42 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).
  8. L. Lyons, A Practical Guide to Data Analysis for Physical Science Students (Cambridge U. Press, Cambridge, UK, 1991), p. 15.
  9. T. C. Larason, S. S. Bruce, A. C. Parr, Spectroradiometric Detector Measurements: I. Ultraviolet Detectors and II. Visible to Near-Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–41 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).
  10. N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
    [CrossRef]
  11. S. B. Lang, Sourcebook of Pyroelectricity (Gordon & Breach, New York, 1974), 40–48.
  12. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), p. 7–79.
  13. D. J. Advena, V. T. Bly, J. T. Cox, “Deposition and characterization of far-infrared absorbing gold black films,” Appl. Opt. 32, 1136–1144 (1993).
    [CrossRef] [PubMed]
  14. G. W. Day, C. A. Hamilton, K. W. Pyatt, “Spectral reference detector for the visible to 12-µm region; convenient, spectrally flat,” Appl. Opt. 15, 1865–1868 (1976).
    [CrossRef] [PubMed]
  15. Central Bureau of the Commission Internationale de L’Éclairage, Methods of Characterizing the Performance of Radiometers and Photometers, CIE Publications, 53 (TC-2.2) (Central Bureau of the Commission Internationale de L’Éclairage, Vienna, Austria, 1982).
  16. E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
    [CrossRef]

1998 (2)

J. H. Lehman, J. A. Aust, “Bicell pyroelectric optical detector made from a single LiNbO3 domain-reversed electret,” Appl. Opt. 37, 4210–4212 (1998).
[CrossRef]

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

1996 (1)

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1996).
[CrossRef]

1993 (1)

1976 (1)

1975 (1)

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

1948 (1)

Advena, D. J.

Aust, J. A.

Blevin, W. R.

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1996).
[CrossRef]

Bly, V. T.

Brown, W. J.

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1996).
[CrossRef]

Bruce, S. S.

T. C. Larason, S. S. Bruce, A. C. Parr, Spectroradiometric Detector Measurements: I. Ultraviolet Detectors and II. Visible to Near-Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–41 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

Byer, N. E.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Cox, J. T.

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

Day, G. W.

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

Eppeldauer, G.

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Advanced Fiber Communications Technologies, L. G. Kazovsky, ed., Commission Internationale de l’Éclairage, Proc. SPIE1479, 71–77 (1991).

Eppeldauer, G. P.

A. L. Migdall, G. P. Eppeldauer, Spectroradiometric Detector Measurements: III. Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–42 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

Fox, N. P.

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Hamilton, C. A.

Harris, L.

Lang, S. B.

S. B. Lang, Sourcebook of Pyroelectricity (Gordon & Breach, New York, 1974), 40–48.

Larason, T. C.

T. C. Larason, S. S. Bruce, A. C. Parr, Spectroradiometric Detector Measurements: I. Ultraviolet Detectors and II. Visible to Near-Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–41 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

Lehman, J. H.

Lyons, L.

L. Lyons, A Practical Guide to Data Analysis for Physical Science Students (Cambridge U. Press, Cambridge, UK, 1991), p. 15.

McGinnies, R.

Migdall, A. L.

A. L. Migdall, G. P. Eppeldauer, Spectroradiometric Detector Measurements: III. Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–42 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

Palmer, J. M.

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Parr, A. C.

T. C. Larason, S. S. Bruce, A. C. Parr, Spectroradiometric Detector Measurements: I. Ultraviolet Detectors and II. Visible to Near-Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–41 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

Prior, T. R.

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Pyatt, K. W.

Siegel, B. M.

Stokowski, S. E.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Theocharous, E.

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Venables, J. D.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Wolfe, W. L.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), p. 7–79.

Zissis, G. J.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), p. 7–79.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

Metrologia (1)

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1996).
[CrossRef]

Other (9)

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Advanced Fiber Communications Technologies, L. G. Kazovsky, ed., Commission Internationale de l’Éclairage, Proc. SPIE1479, 71–77 (1991).

A. L. Migdall, G. P. Eppeldauer, Spectroradiometric Detector Measurements: III. Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–42 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

L. Lyons, A Practical Guide to Data Analysis for Physical Science Students (Cambridge U. Press, Cambridge, UK, 1991), p. 15.

T. C. Larason, S. S. Bruce, A. C. Parr, Spectroradiometric Detector Measurements: I. Ultraviolet Detectors and II. Visible to Near-Infrared Detectors, Natl. Inst. Stand. Technol. Spec. Publ. 250–41 (National Institute of Standards and Technology Measurement Services, Gaithersburg, Md., 1998).

S. B. Lang, Sourcebook of Pyroelectricity (Gordon & Breach, New York, 1974), 40–48.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), p. 7–79.

Central Bureau of the Commission Internationale de L’Éclairage, Methods of Characterizing the Performance of Radiometers and Photometers, CIE Publications, 53 (TC-2.2) (Central Bureau of the Commission Internationale de L’Éclairage, Vienna, Austria, 1982).

E. Theocharous, N. P. Fox, T. R. Prior, “A comparison of the performance of infrared detectors for radiometric applications, in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Diagram of the acoustic nulling concept with equal and opposite pyroelectric domain areas.

Fig. 2
Fig. 2

Schematic diagram of the fixture for applying a high-voltage (HV) electric field across the LiNbO3 plate.

Fig. 3
Fig. 3

Exploded view of spontaneous polarization, electrodes, aperture, and gold black.

Fig. 4
Fig. 4

Perspective-section view of LiNbO3 packaging.

Fig. 5
Fig. 5

Acoustic frequency response for two pyroelectric detectors that were identical except for the poling orientation (detector J15, uniform poling; detector J10, domain engineered).

Fig. 6
Fig. 6

Radiometer construction incorporating the domain-engineered pyroelectric, j10.

Fig. 7
Fig. 7

Arrangement for frequency-response and spatial-response uniformity measurements.

Fig. 8
Fig. 8

Measured signal gain-versus-frequency curves of the domain-engineered pyroelectric radiometer.

Fig. 9
Fig. 9

Horizontal spatial-response scan of the pyroelectric radiometer.

Fig. 10
Fig. 10

Vertical spatial-response scan of the pyroelectric radiometer.

Fig. 11
Fig. 11

Arrangement of the pyroelectric radiometer response and noise measurements.

Fig. 12
Fig. 12

Response linearity and NEP of the domain-engineered pyroelectric radiometer versus radiant power.

Fig. 13
Fig. 13

Domain-engineered pyroelectric radiometer, relative response versus temperature.

Fig. 14
Fig. 14

Domain-engineered pyroelectric detector total reflectance and measurement standard uncertainty versus wavelength. Solid curve, polynomial fit to the averaged reflectance data.

Fig. 15
Fig. 15

Arrangement of the angular response measurements. The laser is used in underfilled mode, and the lamp is used in overfilled mode.

Fig. 16
Fig. 16

Directional (relative angular) error of the pyroelectric detector in the vertical plane versus incidence angle. The incident laser radiation underfilled the detector aperture.

Fig. 17
Fig. 17

Directional (relative angular) error of the pyroelectric detector in the horizontal plane versus incidence angle. The incident lamp radiation overfilled the detector aperture.

Tables (1)

Tables Icon

Table 1 Summary of Radiometer Properties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i =ia,pyro + ia,piezo + ib,piezo,
i =ia,pyro.
Rm =Rcf.
ρλ=Adλ-AtλAsλ-Atλ.
f2, ϕ=Er, ϕEr=0°-1,
f2, ϕ=Er, ϕEr=0°cos -1,

Metrics