Abstract

The FM spectroscopy technique has been applied to two frequency-doubled Nd:YAG lasers to achieve absolute frequency stabilization against the hyperfine structure components of the rovibronic P(54) 32–0 iodine line at 532 nm. A fractional frequency stability of 2 × 10-13 τ-1/2 has been obtained for integration times in the range of 1 ms < τ < 10 s. For longer integration times the stability level remains below 10-13, reaching a minimum value of 4.6 × 10-14 at 100 s. This high stability level is, to our knowledge, the best value achieved against iodine lines by this locking method and for a fully transportable system.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  2. T. J. Kane, E. A. Cheng, “Fast frequency tuning and phase locking of diode-pumped Nd:YAG ring lasers,” Opt. Lett. 13, 970–972 (1988).
    [CrossRef] [PubMed]
  3. M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  4. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  5. L. G. Kazovsky, “Performance analysis and laser linewidth requirements for optical PKS heterodyne communications systems,” J. Lightwave Technol. 4, 415–425 (1986).
    [CrossRef]
  6. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  7. T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
    [CrossRef]
  8. A. J. Wallard, “The frequency stabilization of gas lasers,” J. Phys. E 6, 793–803 (1973).
    [CrossRef]
  9. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  10. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  11. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [CrossRef] [PubMed]
  12. J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
    [CrossRef]
  13. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991).
    [CrossRef] [PubMed]
  14. G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
    [CrossRef]
  15. A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
    [CrossRef]
  16. J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]

1999 (3)

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

1995 (1)

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

1993 (1)

1992 (2)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

1991 (1)

1988 (1)

1986 (1)

L. G. Kazovsky, “Performance analysis and laser linewidth requirements for optical PKS heterodyne communications systems,” J. Lightwave Technol. 4, 415–425 (1986).
[CrossRef]

1985 (1)

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1982 (1)

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

1980 (1)

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

1973 (1)

A. J. Wallard, “The frequency stabilization of gas lasers,” J. Phys. E 6, 793–803 (1973).
[CrossRef]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Arie, A.

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Bava, E.

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

Bertinetto, F.

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

Bisi, M.

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Byer, R. L.

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

Cheng, E. A.

Day, T.

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Eickhoff, M. L.

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

Galzerano, G.

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

Gerstenberger, D. C.

Gursel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Gustafson, E. K.

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

Hall, J. L.

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hong, F.

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Kane, T. J.

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Kazovsky, L. G.

L. G. Kazovsky, “Performance analysis and laser linewidth requirements for optical PKS heterodyne communications systems,” J. Lightwave Technol. 4, 415–425 (1986).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Ma, L. S.

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Muenter, J. S.

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Pfister, O.

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Picard, S.

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Shirley, J. H.

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Svelto, C.

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

Taubman, M.

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Tiemann, B.

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Tye, G. E.

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Wallace, R. W.

Wallard, A. J.

A. J. Wallard, “The frequency stabilization of gas lasers,” J. Phys. E 6, 793–803 (1973).
[CrossRef]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ye, J.

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Yokozeki, A.

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (4)

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. Chem. Phys. (1)

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

J. Lightwave Technol. (1)

L. G. Kazovsky, “Performance analysis and laser linewidth requirements for optical PKS heterodyne communications systems,” J. Lightwave Technol. 4, 415–425 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

A. J. Wallard, “The frequency stabilization of gas lasers,” J. Phys. E 6, 793–803 (1973).
[CrossRef]

Opt. Lett. (4)

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the stabilization of one frequency-doubled Nd:YAG laser: A, amplifier; BS, beam splitter; DBM, double balanced mixer; EOM, electro-optic modulator; I, integral; L, lens; M, mirror; P, polarizer; PBS, polarized BS; PD, photodiode; ph, pinhole; PI, proportional and integral; SM, spherical mirror; TEC, temperature controller; Φ, phase shifter; λ/2, half-wave plate; λ/4, quarter-wave plate; ∑, adder.

Fig. 2
Fig. 2

Allan standard deviation of the beat signal between the green radiations as a function of the integration time τ. ■, free-running lasers. ●, both lasers locked against the hfs component a 1 of the P(54)32–0 line. Solid and dotted lines represent, respectively, the relations σ y ≅ 2 × 10-13 τ -1/2 for 1 ms < τ < 10 s and σ y (τ) = 3 × 10-10τ for 50 ms < τ < 5 s. Error bars, data dispersion at a 1 - σ level.

Fig. 3
Fig. 3

Allan standard deviation of the beat signal between the infrared radiations as a function of the integration timeτ. ■, free-running lasers. ●, both lasers locked against the hfs component a 1 of the P(54)32–0 line. Solid and dotted lines represent, respectively, the relations σ y (τ) = 5 × 10-9τ-1/2 for integration times τ > 10 s and σ y (τ) = 3 × 10-10 τ for 50 ms < τ < 5 s. Error bars, data dispersion at a 1 - σ level.

Fig. 4
Fig. 4

Hyperfine structure of the P(54)32–0 iodine line. The lock-in amplifier is set to a sensitivity of 200 mV and an integration time of 10 ms.

Tables (1)

Tables Icon

Table 1 Hyperfine Frequency Splittings Measurement and Fit for P(54)32-0

Metrics