Abstract

Degenerate four-wave mixing (DFWM) line shapes and signal intensities are measured experimentally in well-characterized hydrogen–air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) beam intensities in the phase-conjugate geometry. Resonances in the A 2Σ+X 2Π (0,0) band of OH are probed with multiaxial-mode laser radiation. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The DFWM signal intensities are used to measure OH number densities in a series of near-adiabatic flames at equivalence ratios ranging from 0.5 to 1.5. Use of saturating pump intensities minimizes the effects of beam absorption, providing more-accurate number density measurements. The saturated DFWM results are in excellent agreement with OH absorption measurements and equilibrium calculations of OH number density. The polarization dependence of the P 1(2) and R 2(1) resonances is investigated in both laser intensity regimes. There is a significant change in relative reflectivities for different polarization configurations when saturated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  3. P. H. Vaccaro, “Degenerate four-wave mixing (DFWM) spectroscopy,” in Nonlinear Spectroscopy for Molecular Structure Determination, E. Hirota, R. W. Field, J. P. Maier, S. Tsuchiya, eds. (Blackwell Scientific Publications Ltd., London, 1997).
  4. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
    [CrossRef]
  5. S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
    [CrossRef]
  6. S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
    [CrossRef]
  7. P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994).
    [CrossRef]
  8. B. Ai, R. J. Knize, “Degenerate four-wave mixing in two-level saturable absorbers,” J. Opt. Soc. Am. B 13, 2408–2419 (1996).
    [CrossRef]
  9. A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994).
    [CrossRef]
  10. G. C. Herring, W. L. Roberts, M. S. Brown, P. A. DeBarber, “Temperature measurement by degenerate four-wave mixing with strong absorption of the excitation beams,” Appl. Opt. 35, 6544–6547 (1996).
    [CrossRef] [PubMed]
  11. G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
    [CrossRef]
  12. P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
    [CrossRef]
  13. P. M. Danehy, R. L. Farrow, “Comparison of degenerate four-wave mixing line shapes from population- and thermal-grating scattering,” J. Opt. Soc. Am. B 13, 1412–1418 (1996).
    [CrossRef]
  14. B. A. Mann, R. F. White, R. J. S. Morrison, “Detection and imaging of nitrogen dioxide with degenerate four-wave mixing and laser-induced fluorescence techniques,” Appl. Opt. 35, 475–481 (1996).
    [CrossRef] [PubMed]
  15. A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
    [CrossRef]
  16. A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
    [CrossRef]
  17. H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
    [CrossRef]
  18. D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
    [CrossRef]
  19. M. Winter, P. P. Radi, “Nearly degenerate four-wave mixing using phase-conjugate pump beams,” Opt. Lett. 17, 320–322 (1992).
    [CrossRef] [PubMed]
  20. M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652.
    [CrossRef]
  21. R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997).
    [CrossRef]
  22. P. Ewart, P. G. R. Smith, R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36, 5959–5968 (1997).
    [CrossRef] [PubMed]
  23. R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659.
    [CrossRef]
  24. R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
    [CrossRef]
  25. R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
    [CrossRef]
  26. P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
    [CrossRef]
  27. G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
    [CrossRef]
  28. B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
    [CrossRef]
  29. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
    [CrossRef] [PubMed]
  30. S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
    [CrossRef]
  31. T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
    [CrossRef] [PubMed]
  32. T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990).
    [CrossRef]
  33. B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
    [CrossRef] [PubMed]
  34. D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.
  35. G. J. Germann, R. L. Farrow, D. J. Rakestraw, “Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2,” J. Opt. Soc. Am. B 12, 25–32 (1995).
    [CrossRef]
  36. V. Sick, M. N. Bui-Pham, R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20, 2036–2038 (1995).
    [CrossRef] [PubMed]
  37. H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
    [CrossRef]
  38. H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
    [CrossRef]
  39. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  40. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
    [CrossRef]
  41. R. L. Abrams, R. C. Lind, “Degenerate four-wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978); erratum, 3, 205 (1978).
  42. T. A. Reichardt, R. P. Lucht, “Interaction of closely spaced resonances in degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 14, 2449–2458 (1997).
    [CrossRef]
  43. T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998).
    [CrossRef]
  44. M. S. Brown, L. A. Rahn, R. P. Lucht, “Degenerate four-wave mixing line shapes of hydroxyl at high pump intensities,” Appl. Opt. 34, 3274–3280 (1995).
    [CrossRef] [PubMed]
  45. T. A. Reichardt, R. P. Lucht, “Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 13, 1107–1119 (1996).
    [CrossRef]
  46. D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
    [CrossRef] [PubMed]
  47. Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996).
    [CrossRef]
  48. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program,” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif., 1996).
  49. S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” (NASA Lewis Research Center, Cleveland, Ohio, 1976).
  50. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
    [CrossRef]
  51. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
    [CrossRef]
  52. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
    [CrossRef]
  53. J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
    [CrossRef]
  54. P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
    [CrossRef]
  55. N. L. Garland, D. R. Crosley, “On the collisional quenching of electronically excited OH, NH and CH in flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1693–1702.
  56. T. A. Reichardt, R. P. Lucht, “Resonant degenerate four-wave mixing spectroscopy of transitions with degenerate energy levels: saturation and polarization effects,” J. Chem. Phys. (to be published).
  57. C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
    [CrossRef]
  58. S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
    [CrossRef]

1998 (3)

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998).
[CrossRef]

1997 (6)

T. A. Reichardt, R. P. Lucht, “Interaction of closely spaced resonances in degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 14, 2449–2458 (1997).
[CrossRef]

C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
[CrossRef]

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997).
[CrossRef]

P. Ewart, P. G. R. Smith, R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36, 5959–5968 (1997).
[CrossRef] [PubMed]

1996 (8)

P. M. Danehy, R. L. Farrow, “Comparison of degenerate four-wave mixing line shapes from population- and thermal-grating scattering,” J. Opt. Soc. Am. B 13, 1412–1418 (1996).
[CrossRef]

B. A. Mann, R. F. White, R. J. S. Morrison, “Detection and imaging of nitrogen dioxide with degenerate four-wave mixing and laser-induced fluorescence techniques,” Appl. Opt. 35, 475–481 (1996).
[CrossRef] [PubMed]

B. Ai, R. J. Knize, “Degenerate four-wave mixing in two-level saturable absorbers,” J. Opt. Soc. Am. B 13, 2408–2419 (1996).
[CrossRef]

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

G. C. Herring, W. L. Roberts, M. S. Brown, P. A. DeBarber, “Temperature measurement by degenerate four-wave mixing with strong absorption of the excitation beams,” Appl. Opt. 35, 6544–6547 (1996).
[CrossRef] [PubMed]

S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 13, 1107–1119 (1996).
[CrossRef]

Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996).
[CrossRef]

1995 (6)

1994 (6)

A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994).
[CrossRef]

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

1993 (3)

R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

1992 (7)

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
[CrossRef]

M. Winter, P. P. Radi, “Nearly degenerate four-wave mixing using phase-conjugate pump beams,” Opt. Lett. 17, 320–322 (1992).
[CrossRef] [PubMed]

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
[CrossRef] [PubMed]

R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
[CrossRef]

1991 (1)

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

1990 (3)

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
[CrossRef] [PubMed]

T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990).
[CrossRef]

1989 (1)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

1988 (1)

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
[CrossRef]

1987 (1)

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

1978 (1)

1977 (1)

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

Abrams, R. L.

R. L. Abrams, R. C. Lind, “Degenerate four-wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978); erratum, 3, 205 (1978).

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
[CrossRef]

Aguerre, F.

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Ai, B.

Alber, G.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Astill, A. G.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994).
[CrossRef]

Attal-Trétout, B.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

Axner, O.

P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
[CrossRef]

Bervas, H.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

Bratfalean, R.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997).
[CrossRef]

Brown, M. S.

Bui-Pham, M. N.

V. Sick, M. N. Bui-Pham, R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20, 2036–2038 (1995).
[CrossRef] [PubMed]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
[CrossRef]

Burris, J.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Butler, J.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Chang, A. Y.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Charlton, A.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Cooper, J.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Cottereau, M.-J.

D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
[CrossRef]

Crosley, D. R.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

N. L. Garland, D. R. Crosley, “On the collisional quenching of electronically excited OH, NH and CH in flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1693–1702.

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program,” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif., 1996).

Danehy, P. M.

DeBarber, P. A.

Delve, P. A.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

Dillmann, M.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Domingues, E.

D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
[CrossRef]

Dreier, T.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
[CrossRef]

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
[CrossRef] [PubMed]

T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990).
[CrossRef]

D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.

Dreizler, A.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Ewart, P.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997).
[CrossRef]

P. Ewart, P. G. R. Smith, R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36, 5959–5968 (1997).
[CrossRef] [PubMed]

C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
[CrossRef]

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Farrow, R. L.

T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998).
[CrossRef]

P. M. Danehy, R. L. Farrow, “Comparison of degenerate four-wave mixing line shapes from population- and thermal-grating scattering,” J. Opt. Soc. Am. B 13, 1412–1418 (1996).
[CrossRef]

P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
[CrossRef]

G. J. Germann, R. L. Farrow, D. J. Rakestraw, “Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2,” J. Opt. Soc. Am. B 12, 25–32 (1995).
[CrossRef]

V. Sick, M. N. Bui-Pham, R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20, 2036–2038 (1995).
[CrossRef] [PubMed]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
[CrossRef]

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659.
[CrossRef]

Feikema, D. A.

D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
[CrossRef]

Friedman-Hill, E. J.

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

Garland, N. L.

N. L. Garland, D. R. Crosley, “On the collisional quenching of electronically excited OH, NH and CH in flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1693–1702.

Germann, G. J.

Goodwin, D. G.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Gordon, S.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” (NASA Lewis Research Center, Cleveland, Ohio, 1976).

Green, D. S.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Gustafson, T. K.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

Hall, G.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hanson, R. K.

B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
[CrossRef] [PubMed]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Heaps, W.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Heinze, J.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Herring, G. C.

Hughes, I. G.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
[CrossRef]

Kelley, P.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

Knize, R. J.

Kohse-Höinghaus, K.

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Kruger, C. H.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Labrunie, L.

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

Lam, J. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
[CrossRef]

Latzel, H.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Le Boiteux, S.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

Lind, R. C.

R. L. Abrams, R. C. Lind, “Degenerate four-wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978); erratum, 3, 205 (1978).

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
[CrossRef]

Ljungberg, P.

P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994).
[CrossRef]

Lloyd, G. M.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Lucht, R. P.

T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Interaction of closely spaced resonances in degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 14, 2449–2458 (1997).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 13, 1107–1119 (1996).
[CrossRef]

M. S. Brown, L. A. Rahn, R. P. Lucht, “Degenerate four-wave mixing line shapes of hydroxyl at high pump intensities,” Appl. Opt. 34, 3274–3280 (1995).
[CrossRef] [PubMed]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Resonant degenerate four-wave mixing spectroscopy of transitions with degenerate energy levels: saturation and polarization effects,” J. Chem. Phys. (to be published).

Luque, J.

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program,” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif., 1996).

Mann, B. A.

McBride, B. J.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” (NASA Lewis Research Center, Cleveland, Ohio, 1976).

McGee, T.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Meacher, D. R.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Morrison, R. J. S.

Neyer, D. W.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

Owano, T. G.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Paul, P. H.

P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
[CrossRef]

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

Radi, P. P.

M. Winter, P. P. Radi, “Nearly degenerate four-wave mixing using phase-conjugate pump beams,” Opt. Lett. 17, 320–322 (1992).
[CrossRef] [PubMed]

M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652.
[CrossRef]

Rahn, L. A.

S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
[CrossRef]

M. S. Brown, L. A. Rahn, R. P. Lucht, “Degenerate four-wave mixing line shapes of hydroxyl at high pump intensities,” Appl. Opt. 34, 3274–3280 (1995).
[CrossRef] [PubMed]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
[CrossRef]

Rakestraw, D. J.

G. J. Germann, R. L. Farrow, D. J. Rakestraw, “Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2,” J. Opt. Soc. Am. B 12, 25–32 (1995).
[CrossRef]

R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
[CrossRef]

T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990).
[CrossRef]

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
[CrossRef] [PubMed]

D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659.
[CrossRef]

Rea, E. C.

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

Reichardt, T. A.

Reid, S. A.

Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996).
[CrossRef]

Roberts, W. L.

Robertson, G. N.

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

Sethuraman, S.

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Sick, V.

Smith, A. P.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994).
[CrossRef]

Smith, P. G. R.

Stampanoni, A.

M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652.
[CrossRef]

Steel, D. G.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
[CrossRef]

Stricker, W.

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

Tang, Y.

Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996).
[CrossRef]

Taran, J. P.

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

Thorne, L. R.

D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.

Vaccaro, P. H.

P. H. Vaccaro, “Degenerate four-wave mixing (DFWM) spectroscopy,” in Nonlinear Spectroscopy for Molecular Structure Determination, E. Hirota, R. W. Field, J. P. Maier, S. Tsuchiya, eds. (Blackwell Scientific Publications Ltd., London, 1997).

Vander Wal, R. L.

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659.
[CrossRef]

Whitaker, B. J.

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

White, R. F.

Williams, R. B.

Williams, S.

S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Winter, M.

M. Winter, P. P. Radi, “Nearly degenerate four-wave mixing using phase-conjugate pump beams,” Opt. Lett. 17, 320–322 (1992).
[CrossRef] [PubMed]

M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652.
[CrossRef]

Wolfrum, J.

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Yip, B.

Zare, R. N.

S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (7)

A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994).
[CrossRef]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998).
[CrossRef]

A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995).
[CrossRef]

H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998).
[CrossRef]

D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992).
[CrossRef]

P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994).
[CrossRef]

Appl. Phys. B. (1)

T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990).
[CrossRef]

Chem. Phys. (1)

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Chem. Phys. Lett. (1)

A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995).
[CrossRef]

Combust. Flame (1)

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

J. Appl. Phys. (1)

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988).
[CrossRef]

J. Chem. Phys. (6)

Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996).
[CrossRef]

C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997).
[CrossRef]

S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994).
[CrossRef]

S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

J. Opt. Soc. Am. B (9)

B. Ai, R. J. Knize, “Degenerate four-wave mixing in two-level saturable absorbers,” J. Opt. Soc. Am. B 13, 2408–2419 (1996).
[CrossRef]

P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995).
[CrossRef]

P. M. Danehy, R. L. Farrow, “Comparison of degenerate four-wave mixing line shapes from population- and thermal-grating scattering,” J. Opt. Soc. Am. B 13, 1412–1418 (1996).
[CrossRef]

R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 13, 1107–1119 (1996).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Interaction of closely spaced resonances in degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 14, 2449–2458 (1997).
[CrossRef]

T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998).
[CrossRef]

G. J. Germann, R. L. Farrow, D. J. Rakestraw, “Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2,” J. Opt. Soc. Am. B 12, 25–32 (1995).
[CrossRef]

J. Phys. B (2)

H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992).
[CrossRef]

B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996).
[CrossRef]

P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989).
[CrossRef]

Nuovo Cimento (1)

H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (2)

R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997).
[CrossRef]

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990).
[CrossRef] [PubMed]

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Science (1)

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Other (10)

D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

P. H. Vaccaro, “Degenerate four-wave mixing (DFWM) spectroscopy,” in Nonlinear Spectroscopy for Molecular Structure Determination, E. Hirota, R. W. Field, J. P. Maier, S. Tsuchiya, eds. (Blackwell Scientific Publications Ltd., London, 1997).

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284.
[CrossRef]

M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652.
[CrossRef]

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program,” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif., 1996).

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” (NASA Lewis Research Center, Cleveland, Ohio, 1976).

N. L. Garland, D. R. Crosley, “On the collisional quenching of electronically excited OH, NH and CH in flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1693–1702.

T. A. Reichardt, R. P. Lucht, “Resonant degenerate four-wave mixing spectroscopy of transitions with degenerate energy levels: saturation and polarization effects,” J. Chem. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the DFWM experiment. bs, beam splitter; J-meter, joulemeter; fs plate, fused-silica plate; GP, Glan polarizer; bd, beam dump; nd, neutral density filter; ap, aperture; sf, spectral filter; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Saturation curve of the P 1(2) transition for the ϕ = 0.9 flame.

Fig. 3
Fig. 3

DFWM reflectivity calculated from the data presented in Fig. 2. The experimental results are compared with the results from the closed-form solutions given by the Abrams–Lind (A–L) line-center equation, the modified Abrams–Lind expression, and the Meacher et al. model.

Fig. 4
Fig. 4

Laser absorption line shape of the Q 1(8) transition for the ϕ = 1.0 flame. The experimental line shape is shown with the filled circles and the solid curve is the calculated line shape assuming a 0.27-cm-1 laser source.

Fig. 5
Fig. 5

(a) Unfocused and (b) focused DFWM line shapes of the P 1(2) transition for the ϕ = 0.7 flame. The unfocused pump intensity was 4 × 1010 W/m2 and the focused pump intensity was 2 × 1012 W/m2.

Fig. 6
Fig. 6

Variation of integrated absorption plotted versus the equivalence ratio. Both the experimental results and those calculated from equilibrium OH concentrations are presented. The calculated adiabatic flame temperatures are also included.

Fig. 7
Fig. 7

Measurements of OH number density as a function of the equivalence ratio for (a) unfocused beams and (b) focused beams.

Fig. 8
Fig. 8

Variation of the quenching rate coefficient, the RET rate coefficient, the Doppler width, and the collisional width with equivalence ratio.

Fig. 9
Fig. 9

Variation of the theoretical factors that govern the dependence of the square root of the DFWM signal on the collisional and Doppler widths for low-power and saturating laser beams.

Fig. 10
Fig. 10

DFWM line shapes of the P 1(2) resonance for (a) unfocused and (b) focused beams for different polarization geometries. These line shapes were acquired in the ϕ = 0.7 flame. The solid line indicates the theoretical signal level for the ZXXZ and XXZZ configurations and the dashed line indicates the theoretical signal level for the XZXZ configuration assuming equal relaxation rates of the population, orientation, and alignment gratings.

Fig. 11
Fig. 11

DFWM line shapes of the R 2(1) resonance for (a) unfocused and (b) focused beams for different polarization geometries. These line shapes were acquired in the ϕ = 0.7 flame. The solid line indicates the theoretical signal level for the ZXXZ and XXZZ configurations and the dashed line indicates the theoretical signal level for the XZXZ configuration assuming equal relaxation rates of the population, orientation, and alignment gratings.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

AωL=1-TωL=1--+ gLω-ωLexp-K21gVωLdω,
K21=g2g1 n1-n2λ212A214.
ΔωC=2γRET+γquenching.
ΔωD=ω08 ln 2kTmc21/2.
Aint=-+ AωLdωL.
Isig,unsaturating1/2  Ilaser3/21/ΔωD1/ΔωC2
Isig,saturating1/2  Ilaser<1/21/ΔωD1/ΔωC<1/2
SNR=peak signal - average backgroundrms background.
detection limit=570 ppmSNR5 mm/L21/2,

Metrics