Abstract

Results of experiments on stress-inhibited laser-driven crack growth and stress-delayed laser-damage initiation thresholds in fused silica, borosilicate glass (BK-7), and cleaved bulk silica are presented. A numerical model is developed to explain the crack arrest in fused silica. Good agreement is obtained between the model and a finite-element code. The crack arrest is demonstrated to be the result of the breaking of a hoop-stress symmetry that is responsible for crack propagation in fused silica.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).
  2. T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
    [CrossRef]
  3. S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
    [CrossRef]
  4. M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).
  5. J. A. Paisner, “Effect of laser-induced damage on the National Ignition Facility optical design,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 768–770 (1998).
  6. M. André, “Status of the LMJ program in France: effect of increased damage resistant coatings on megajoule-class laser performances,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 766–767 (1998).
  7. S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
    [CrossRef]
  8. A. G. Evans, “Fatigue in ceramics,” Int. J. Fract. 16, 485–498 (1980).
    [CrossRef]
  9. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
    [CrossRef]
  10. F. Dahmani, A. W. Schmid, J. C. Lambropoulos, S. J. Burns, “Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number,” Appl. Opt. 37, 7772–7784 (1998).
    [CrossRef]
  11. M. Rothschild, D. J. Ehrlich, “A review of excimer laser projection lithography,” J. Vac. Sci. Technol. B 6, 1–17 (1988).
    [CrossRef]
  12. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelengths,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef] [PubMed]
  13. F. Dahmani, S. J. Burns, J. C. Lambropoulos, S. Papernov, A. W. Schmid, “Arresting UV-laser damage in fused silica,” Opt. Lett. 24, 516–518 (1999).
    [CrossRef]
  14. A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).
  15. S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).
  16. P. W. Bridgman, I. Simon, “Effect of very high pressures on glass,” J. Appl. Phys. 24, 405–413 (1953).
    [CrossRef]
  17. H. M. Cohen, R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).
  18. C. Meade, R. Jeanloz, “Frequency-dependent equation of state of fused silica to 10 GPa,” Phys. Rev. B 35, 236–244 (1987).
    [CrossRef]
  19. H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
    [CrossRef]
  20. M. Malin, K. Vedam, “Ellipsometric studies of environment-sensitive polish layers of glass,” J. Appl. Phys. 48, 1155–1157 (1977).
    [CrossRef]
  21. J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
    [CrossRef]
  22. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1972).
    [CrossRef]
  23. J. M. Bennett, R. J. King, “Effect of polishing technique on roughness and residual surface film on fused quartz optical flats,” Appl. Opt. 9, 236–238 (1970).
    [CrossRef] [PubMed]
  24. D. W. Fradin, M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157–159 (1973).
    [CrossRef]
  25. J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
    [CrossRef]
  26. D. Milam, “Laser-induced damage at 1064 nm, 125 ps,” Appl. Opt. 16, 1204–1213 (1977).
    [CrossRef] [PubMed]
  27. R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
    [CrossRef]
  28. W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [CrossRef]
  29. A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
    [CrossRef]
  30. F. Rainer, R. P. Gonzales, A. J. Morgan, “Laser damage data base at 1064 nm,” in Laser Induced Damage in Optical Materials 1989, L. L. Chase, B. E. Newman, A. H. Guenther, H. E. Bennett, M. J. Soileau, eds., Proc. SPIE1438, 58–73 (1989).
  31. Fused silica 7940 data sheet 6/1993 (Corning Incorporated, Advanced Materials Department, Corning, New York 14831).
  32. C. O. Horgan, “Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics,” in Mathematical Problems in Elasticity, R. Russo, ed., Vol. 38 of the Series on Advances in Mathematics for Applied Sciences (World Scientific, River Edge, N.J., 1996), pp. 47–89.
    [CrossRef]

1999

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
[CrossRef]

F. Dahmani, S. J. Burns, J. C. Lambropoulos, S. Papernov, A. W. Schmid, “Arresting UV-laser damage in fused silica,” Opt. Lett. 24, 516–518 (1999).
[CrossRef]

1998

1996

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
[CrossRef]

1995

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

1988

1987

C. Meade, R. Jeanloz, “Frequency-dependent equation of state of fused silica to 10 GPa,” Phys. Rev. B 35, 236–244 (1987).
[CrossRef]

1981

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

1980

A. G. Evans, “Fatigue in ceramics,” Int. J. Fract. 16, 485–498 (1980).
[CrossRef]

1979

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

1977

D. Milam, “Laser-induced damage at 1064 nm, 125 ps,” Appl. Opt. 16, 1204–1213 (1977).
[CrossRef] [PubMed]

R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
[CrossRef]

M. Malin, K. Vedam, “Ellipsometric studies of environment-sensitive polish layers of glass,” J. Appl. Phys. 48, 1155–1157 (1977).
[CrossRef]

1974

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
[CrossRef]

1973

D. W. Fradin, M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157–159 (1973).
[CrossRef]

1972

1970

1969

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

1965

H. M. Cohen, R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

1953

P. W. Bridgman, I. Simon, “Effect of very high pressures on glass,” J. Appl. Phys. 24, 405–413 (1953).
[CrossRef]

André, M.

M. André, “Status of the LMJ program in France: effect of increased damage resistant coatings on megajoule-class laser performances,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 766–767 (1998).

Anzellotti, J. F.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

Arora, A.

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

Bass, M.

D. W. Fradin, M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157–159 (1973).
[CrossRef]

Bennett, J. M.

Bettis, J. R.

R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
[CrossRef]

Bloembergen, N.

Bodner, S. E.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Boehly, T. R.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Boling, N. N.

J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
[CrossRef]

Bridgman, P. W.

P. W. Bridgman, I. Simon, “Effect of very high pressures on glass,” J. Appl. Phys. 24, 405–413 (1953).
[CrossRef]

Brimacombe, R. K.

Bumpas, S. E.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

Burns, S. J.

Campbell, J. H.

A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

Chan, Y.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Chinsio, R.

A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).

Cohen, H. M.

H. M. Cohen, R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Colombant, D.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Craxton, R. S.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Dahlburg, J. P.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Dahmani, F.

Denis, A. V.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Diness, A. M.

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

Dube, G.

J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, “A review of excimer laser projection lithography,” J. Vac. Sci. Technol. B 6, 1–17 (1988).
[CrossRef]

Evans, A. G.

A. G. Evans, “Fatigue in ceramics,” Int. J. Fract. 16, 485–498 (1980).
[CrossRef]

Fang, T.

J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
[CrossRef]

Fradin, D. W.

D. W. Fradin, M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157–159 (1973).
[CrossRef]

Gardner, J. H.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Génin, F. Y.

A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).

Gerber, K.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Gonzales, R. P.

F. Rainer, R. P. Gonzales, A. J. Morgan, “Laser damage data base at 1064 nm,” in Laser Induced Damage in Optical Materials 1989, L. L. Chase, B. E. Newman, A. H. Guenther, H. E. Bennett, M. J. Soileau, eds., Proc. SPIE1438, 58–73 (1989).

Guenther, A. H.

R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
[CrossRef]

Hardgrove, J.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Heggins, D. D.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

Heuer, A. H.

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

Hinterman, T. H.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Horgan, C. O.

C. O. Horgan, “Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics,” in Mathematical Problems in Elasticity, R. Russo, ed., Vol. 38 of the Series on Advances in Mathematics for Applied Sciences (World Scientific, River Edge, N.J., 1996), pp. 47–89.
[CrossRef]

House, R. A.

R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
[CrossRef]

Hurst, P. A.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

Jeanloz, R.

C. Meade, R. Jeanloz, “Frequency-dependent equation of state of fused silica to 10 GPa,” Phys. Rev. B 35, 236–244 (1987).
[CrossRef]

Johnson, H.

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

Kelly, J. H.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Kessler, T. J.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

King, R. J.

Kinosita, K.

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Klapisch, M.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Kozlowski, M. R.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Kumpan, S. A.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Lambropoulos, J. C.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
[CrossRef]

F. Dahmani, S. J. Burns, J. C. Lambropoulos, S. Papernov, A. W. Schmid, “Arresting UV-laser damage in fused silica,” Opt. Lett. 24, 516–518 (1999).
[CrossRef]

F. Dahmani, A. W. Schmid, J. C. Lambropoulos, S. J. Burns, “Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number,” Appl. Opt. 37, 7772–7784 (1998).
[CrossRef]

J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
[CrossRef]

Lawn, B. R.

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

Lehecka, T.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Lehmberg, R. H.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Leopold, K. E.

Letzring, S. A.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Malin, M.

M. Malin, K. Vedam, “Ellipsometric studies of environment-sensitive polish layers of glass,” J. Appl. Phys. 48, 1155–1157 (1977).
[CrossRef]

Maricle, S.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Marshall, D. B.

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

McCrory, R. L.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

McLean, E. A.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Meade, C.

C. Meade, R. Jeanloz, “Frequency-dependent equation of state of fused silica to 10 GPa,” Phys. Rev. B 35, 236–244 (1987).
[CrossRef]

Mihailov, S.

Milam, D.

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

D. Milam, “Laser-induced damage at 1064 nm, 125 ps,” Appl. Opt. 16, 1204–1213 (1977).
[CrossRef] [PubMed]

Morgan, A. J.

F. Rainer, R. P. Gonzales, A. J. Morgan, “Laser damage data base at 1064 nm,” in Laser Induced Damage in Optical Materials 1989, L. L. Chase, B. E. Newman, A. H. Guenther, H. E. Bennett, M. J. Soileau, eds., Proc. SPIE1438, 58–73 (1989).

Morse, S. F. B.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Mostovych, A. N.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Mouser, R.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Nishibori, M.

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Obenschain, S. P.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Paisner, J. A.

J. A. Paisner, “Effect of laser-induced damage on the National Ignition Facility optical design,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 768–770 (1998).

Papernov, S.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
[CrossRef]

F. Dahmani, S. J. Burns, J. C. Lambropoulos, S. Papernov, A. W. Schmid, “Arresting UV-laser damage in fused silica,” Opt. Lett. 24, 516–518 (1999).
[CrossRef]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

Parham, T.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Pawley, C. J.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Pronko, M. S.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Rainer, F.

F. Rainer, R. P. Gonzales, A. J. Morgan, “Laser damage data base at 1064 nm,” in Laser Induced Damage in Optical Materials 1989, L. L. Chase, B. E. Newman, A. H. Guenther, H. E. Bennett, M. J. Soileau, eds., Proc. SPIE1438, 58–73 (1989).

Ringlien, J. A.

J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
[CrossRef]

Rothschild, M.

M. Rothschild, D. J. Ehrlich, “A review of excimer laser projection lithography,” J. Vac. Sci. Technol. B 6, 1–17 (1988).
[CrossRef]

Roy, R.

H. M. Cohen, R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Sakata, H.

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Salleo, A.

A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).

Schmid, A. W.

F. Dahmani, S. J. Burns, J. C. Lambropoulos, S. Papernov, A. W. Schmid, “Arresting UV-laser damage in fused silica,” Opt. Lett. 24, 516–518 (1999).
[CrossRef]

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
[CrossRef]

F. Dahmani, A. W. Schmid, J. C. Lambropoulos, S. J. Burns, “Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number,” Appl. Opt. 37, 7772–7784 (1998).
[CrossRef]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

Schmitt, A. J.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Schwartz, S.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Seka, W.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Serlin, V.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Sethian, J. D.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Simon, I.

P. W. Bridgman, I. Simon, “Effect of very high pressures on glass,” J. Appl. Phys. 24, 405–413 (1953).
[CrossRef]

Skupsky, S.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Smith, D. J.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

Soures, J. M.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Stamper, J. A.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Steele, W. A.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

Sullivan, C. A.

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Swain, M. V.

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

Taylor, R. S.

Vedam, K.

M. Malin, K. Vedam, “Ellipsometric studies of environment-sensitive polish layers of glass,” J. Appl. Phys. 48, 1155–1157 (1977).
[CrossRef]

Verdon, C. P.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Wegner, P.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Weiland, T.

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

Wiederhorn, S. M.

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

Xu, S.

J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
[CrossRef]

Yakota, H.

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Zaksas, D.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

Appl. Opt.

Appl. Phys. Lett.

D. W. Fradin, M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157–159 (1973).
[CrossRef]

J. A. Ringlien, N. N. Boling, G. Dubė, “An acid treatment for raising the surface damage threshold of laser glass,” Appl. Phys. Lett. 25, 598–600 (1974).
[CrossRef]

IEEE J. Quantum Electron.

R. A. House, J. R. Bettis, A. H. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. QE-13, 361–363 (1977).
[CrossRef]

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Int. J. Fract.

A. G. Evans, “Fatigue in ceramics,” Int. J. Fract. 16, 485–498 (1980).
[CrossRef]

J. Am. Ceram. Soc.

J. C. Lambropoulos, S. Xu, T. Fang, “Constitutive law for the densification of fused silica, with applications in polishing and microgrinding,” J. Am. Ceram. Soc. 79, 1441–1452 (1996).
[CrossRef]

S. M. Wiederhorn, H. Johnson, A. M. Diness, A. H. Heuer, “Fracture of glass in vacuum,” J. Am. Ceram. Soc. 57, 336–341 (1974).
[CrossRef]

J. Appl. Phys.

M. Malin, K. Vedam, “Ellipsometric studies of environment-sensitive polish layers of glass,” J. Appl. Phys. 48, 1155–1157 (1977).
[CrossRef]

P. W. Bridgman, I. Simon, “Effect of very high pressures on glass,” J. Appl. Phys. 24, 405–413 (1953).
[CrossRef]

J. Mater. Res.

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, “Fracture of fused silica with 351-nm-laser-generated surface cracks,” J. Mater. Res. 14, 597–605 (1999).
[CrossRef]

J. Non-Cryst. Solids

A. Arora, D. B. Marshall, B. R. Lawn, M. V. Swain, “Indentation-deformation/fracture of normal and anomalous glasses,” J. Non-Cryst. Solids 31, 415–428 (1979).
[CrossRef]

J. Vac. Sci. Technol. B

M. Rothschild, D. J. Ehrlich, “A review of excimer laser projection lithography,” J. Vac. Sci. Technol. B 6, 1–17 (1988).
[CrossRef]

Opt. Lett.

Phys. Chem. Glasses

H. M. Cohen, R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Phys. Plasmas

S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, Y. Chan, A. V. Denis, J. Hardgrove, T. Lehecka, M. Klapisch, “The Nike KrF laser facility: performance and initial target experiments,” Phys. Plasmas 3, 2098–2107 (1996).
[CrossRef]

Phys. Rev. B

C. Meade, R. Jeanloz, “Frequency-dependent equation of state of fused silica to 10 GPa,” Phys. Rev. B 35, 236–244 (1987).
[CrossRef]

Rev. Sci. Instrum.

T. R. Boehly, R. S. Craxton, T. H. Hinterman, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. A. Letzring, R. L. McCrory, S. F. B. Morse, W. Seka, S. Skupsky, J. M. Soures, C. P. Verdon, “The upgrade to the OMEGA laser system,” Rev. Sci. Instrum. 66, 508–510 (1995).
[CrossRef]

Surf. Sci.

H. Yakota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Other

A. Salleo, R. Chinsio, J. H. Campbell, F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 456–471 (1998).

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, “One step closer to the intrinsic laser-damage threshold of the HfO2 and SiO2 monolayer thin films,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 434–445 (1997).

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 106–125 (1996).

M. R. Kozlowski, S. Maricle, R. Mouser, S. Schwartz, T. Parham, P. Wegner, T. Weiland, “Laser damage performance of fused silica optical components measured on the Beamlet laser system at 355 nm,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 436–445 (1998).

J. A. Paisner, “Effect of laser-induced damage on the National Ignition Facility optical design,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 768–770 (1998).

M. André, “Status of the LMJ program in France: effect of increased damage resistant coatings on megajoule-class laser performances,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 766–767 (1998).

F. Rainer, R. P. Gonzales, A. J. Morgan, “Laser damage data base at 1064 nm,” in Laser Induced Damage in Optical Materials 1989, L. L. Chase, B. E. Newman, A. H. Guenther, H. E. Bennett, M. J. Soileau, eds., Proc. SPIE1438, 58–73 (1989).

Fused silica 7940 data sheet 6/1993 (Corning Incorporated, Advanced Materials Department, Corning, New York 14831).

C. O. Horgan, “Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics,” in Mathematical Problems in Elasticity, R. Russo, ed., Vol. 38 of the Series on Advances in Mathematics for Applied Sciences (World Scientific, River Edge, N.J., 1996), pp. 47–89.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Experimental setup for the generation of laser-surface flaws and arrangement for applying external compressive loads or pressures to optical materials by clamping the conventional polished samples between two thick aluminum plates. The static pressure applied is measured by a load cell. No bending of the aluminum plates was observed in the load range used (≤10 kgf).

Fig. 2
Fig. 2

3-D view of the arrangement for applying compressive loads to optical materials (1). In 2, a section in the yz plane is considered. It is assumed that the stress σ zz along the x direction is uniform, reducing the 3-D problem to a 2-D problem. In 3, the superposition method for calculating the 2-D stress field within an optical material subjected to an external compressive load (or pressure) in the y direction is presented. The stress field in (a), which corresponds to inset 2, corresponding is equal to the sum of (b) the 1-D stress field (σ yy = -p everywhere) and (c) the 2-D stress field.

Fig. 3
Fig. 3

Stress distributions, σ txx and σ tzz along the z direction (for a total applied pressure of p = -4.9 psi, corresponding to a total loading of 9.8 N) in a fused-silica sample (Young’s modulus E = 11 × 106 psi, Poisson’s ratio ν = 0.17) at y = -t/2 (t = 4.3 mm) and x = 0 mm (w = 14 mm, L = 32 mm). It is clearly shown that σ tzz is approximately five times larger than σ txx .

Fig. 4
Fig. 4

Loading area and mesh pattern of the finite-element model used in the ANSYS 5.4A code.

Fig. 5
Fig. 5

Stress distribution calculated by the ANSYS 5.4A code within a fused-silica sample loaded with a total force of 6 kgf versus the irradiation position site in the x direction. The calculations are for z = 1.84 mm at the exit surface (y = -t/2 = -2.15 mm; w = 14 mm, L = 32 mm). It is clearly shown that the stress σ tzz is uniform in the x direction.

Fig. 6
Fig. 6

Comparison between the results of the finite-element code ANSYS 5.4A and the numerical model for the stress σ tzz obtained at the exit surface (y = -t/2 = -2.15 mm) with a total external load of P = 10 kgf (98 N) at x = 0.4 mm (w = 14 mm, L = 32 mm).

Fig. 7
Fig. 7

Distribution of surface-damage thresholds of fused silica with 500-ps/351-nm pulses for two rms surface roughnesses and cleaved bulk silica, seconds after cleaving. The cleaved tested sites had a flat and smooth areas suitable for damage measurements up to 4 mm2.

Fig. 8
Fig. 8

(○) entrance-surface and (+, ×) exit-351-nm damage-initiation thresholds as functions of applied stresses in fused silica. Results for exit-surface damage-initiation thresholds for two batches of samples with different rms surface roughnesses show that the damage-initiation threshold enhancement through external stresses can be achieved over a broad surface-roughness range.

Fig. 9
Fig. 9

Exit-surface 1053-nm damage-initiation threshold as a function of external applied stresses for the configuration of Fig. 1 obtained with BK-7. For comparison, a data point (filled triangle) obtained at 1064-nm/1-ns from Ref. 30 is shown.

Fig. 10
Fig. 10

Front-surface, 351-nm/500-ps damage-initiation threshold as a function of applied stresses in the z direction in cleaved bulk fused silica.

Fig. 11
Fig. 11

Cross-sectional micrographs of laser-induced cracks in fused silica after 270 exposures to UV fluences F L = 2.1F exit/th for (a) a sample free of external stress and for stressed samples with (b) σ zz = -0.43 psi, (c) σ zz = -1.16 psi, and (d) σ zz = -3.48 psi. The crack tip in micrograph (a) is, for the given magnification, already located outside the field of view. It is clearly shown that an inhibition of the crack growth is obtained on application of external stresses.

Fig. 12
Fig. 12

Crack length as a function of applied external stress in fused silica for irradiation conditions identical to those in Fig. 8.

Fig. 13
Fig. 13

Depiction of the hoop stress responsible for laser-induced crack growth in fused silica.

Fig. 14
Fig. 14

Comparison between the hoop stress [Eq. (20) of Ref. 10 for σ r = -145 psi, c = 0.3 mm] and stress σ tzz from the numerical model for an applied pressure of p = 49 psi at z = 1.5 mm from the sample center. It can be clearly seen that applying an external pressure diminishes the magnitude of the hoop stress.

Fig. 15
Fig. 15

Crack length versus fluence ratio F L /F exit/th for N = 270 laser pulses for both unstressed [relation (14)] and stressed [relation (20) with σ tzz = -3.66 psi] fused-silica samples. Data points are experimental: filled circles, unstressed samples10; open circles, a stressed sample with σ tzz = -3.66 psi.

Fig. 16
Fig. 16

Comparison of experimental crack lengths and predictions of Eq. (20) for fused-silica samples. The calculations and data points are for irradiated sites of coordinates (x = 0, z = 1.5 mm). The value of the nearest measurable residual stress was taken as σ r = -203 psi (-1.4 MPa) for N = 270 laser pulses at F L /F exit/th = 2.1.10

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

y=±t/2, σ2yy=p-c1<z<c10-w/2<z<-c1,c1<z<w/2,
σ2yz=0;
z=±w/2,  σ2zz=0,
σ2yz=0.
ϕy, z=n=1 cosαnzAnchαny+Bnαnyshαny+B0z2,
σ2yy=2ϕz2=-n=1 αn2 cosαnzAnchαny+Bnαnyshαny+2B0,
σ2zz=2ϕy2=n=1 αn2 cosαnzAnchαny+Bnαnyshαny+2chαny,
σ2yz=-2ϕyz=n=1 αn2 sinαnzAnshαny+Bnαnychαny+shαny.
αn=2nπw.
An=-Bn1+αnt2 cothαnt2.
B0=pc1w,
Bn=4pwαn3shαnt2sinαnc1αnt2+shαnt2chαnt2.
τxz=-3σr1-2xzr222+6 c4r4-4 c2r2+x2-z2r221-3 c4r4+2 c2r2,
amm0.0096±0.0021NFLFexit/th-12/3,
σrpsi5.6±0.74FLFexit/th-11/2N2/3.
τxz=τxz-|σtzz|2=Ax, zσr,
Ax, z=-31-2xzr222+6 c4r4-4 c2r2+x2-z2r221-3 c4r4+2 c2r2,
σr=τxz-|σtzz|/2Ax, z.
FLFexit/th-1τxz-|σtzz|/25.6±0.74Ax, z2N-4/3.
amm0.0096±0.0021×τxz-|σtzz|/25.6±0.74Ax, z4/3N1/9.
σ2yy=2ϕz2=-n=1 αn2 cosαnzAnchαny+Bnαnyshαny+2B0,
σ2zz=2ϕy2=n=1 αn2 cosαnzAnchαny+Bnαnyshαny+2chαny,
σ2yz=-2ϕyz=n=1 αn2 sinαnzAnshαny+Bnαnychαny+shαny.
αn=2nπw.
σ2yz=0=n=1 αn2 sinαnzAnshαny+Bnαnychαny+shαny.
An=-Bn1+αnt2 cothαnt2.
y=±t/2; α2yy=p-c1<z<c10-w/2<z<-c1c1<z<w/2=-n=1 αn2 cosαnzAnchαnt/2+Bnαnt2 shαnt/2+2B0.
σ2yyz, t/2=n=1 αn2 cosαnz×αnt2+shαnt/2chαnt/2shαnt/2Bn+2B0,
σ2yyz, t/2=n>0 Pn cosαnz+P0=fz,
Pn=αn2αnt2+shαnt/2chαnt/2shαnt/2Bn, P0=2B0,
fz=p-c1<z<c1,0-w/2<z<-c1,c1<z<w/2.
Bn=2wshαnt2αn2αnt2+shαnt2chαnt2×-w/2w/2 fzcosαnzdz, n>0,
2B0=1w-w/2w/2 fzdz.
B0=pc1w,
Bn=4pwαn3shαnt2sinαnc1αnt2+shαnt2chαntn.
σ2yy=2pc1w+2pπn=1sinαnc1nαnt2 chαnt2chαny-αnyshαny-chαnyshαnt2αnt2+shαnt2chαnt2cosαnz,
σ2zz=-2pπn=1sinαnc1nαnt2 chαnt2chαny-αnyshαny+chαnyshαnt2αnt2+shαnt2chαnt2cosαnz,
σ2yz=-2pπn=1sinαnc1nαnt2 chαnt2shαny-αnychαnyshαnt2αnt2+shαnt2chαnt2sinαnz.
σtyy=σ1yy+σ2yy=-p+2pc1w+2pπn=1sinαnc1n×αnt2 chαnt2chαny-αnyshαny-chαnyshαnt2αnt2+shαnt2chαnt2cosαnz,
σtzz=σ1zz=- 2pπn=1sinαnc1nαnt2 chαnt2chαny-αnyshαny+chαnyshαnt2αnt2+shαnt2chαnt2cosαnz,
σtyz=σ1yz=- 2pπn=1sinαnc1nαnt2 chαnt2shαny-αnychαnyshαnt2αnt2+shαnt2chαnt2sinαnz,

Metrics