Abstract

We report a new design for a polarization-selective laser cavity with birefringent diffractive phase elements. This laser cavity can create two modes with different polarizations and profiles launched separately from two end mirrors. The numerical simulation results show that the constructed laser cavity can successfully generate two orthogonal polarization modes with a uniform circular shaped pattern output from one end mirror and a uniform square-shaped pattern output from another end mirror.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 23.
  2. N. McCarthy, P. Lavigne, “Large-size Gaussian mode in unstable resonators using Gaussian mirrors,” Opt. Lett. 10, 553–555 (1985).
    [CrossRef] [PubMed]
  3. N. McCarthy, P. Lavigne, “Optical resonators with Gaussian reflectivity mirrors: misalignment sensitivity,” Appl. Opt. 22, 2704–2708 (1983).
    [CrossRef] [PubMed]
  4. M. Piche, D. Cantin, “Enhancement of modal feedback in unstable resonators using mirrors with a phase step,” Opt. Lett. 16, 1135–1137 (1991).
    [CrossRef] [PubMed]
  5. V. Kermene, A. Saviot, M. Vampouille, B. Colombeau, C. Froehly, “Flattening of the spatial laser beam profile with low losses and minimal beam divergence,” Opt. Lett. 17, 859–961 (1992).
    [CrossRef]
  6. P. A. Belanger, C. Pare, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
    [CrossRef] [PubMed]
  7. J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19, 108–110 (1994).
    [CrossRef] [PubMed]
  8. J. R. Leger, D. Chen, G. Mowry, “Design and performance of diffractive optics for custom laser resonators,” Appl. Opt. 34, 2498–2509 (1995).
    [CrossRef] [PubMed]
  9. J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser resonator with internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994).
    [CrossRef] [PubMed]
  10. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [CrossRef] [PubMed]
  11. I. Richter, P. C. Sun, F. Xu, Y. Fainman, “Design considerations of form-birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995).
    [CrossRef] [PubMed]
  12. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication. I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]

1995

1994

1992

1991

1985

1983

Belanger, P. A.

Cantin, D.

Chen, D.

Colombeau, B.

Dai, K.

Fainman, Y.

Froehly, C.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Kermene, V.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Lavigne, P.

Leger, J. R.

McCarthy, N.

Mowry, G.

O’Shea, D. C.

Pare, C.

Piche, M.

Richter, I.

Saviot, A.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 23.

Suleski, T. J.

Sun, P. C.

Vampouille, M.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Wang, Z.

Xu, F.

Appl. Opt.

Opt. Lett.

Science

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[CrossRef] [PubMed]

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the laser cavity containing two polarization-selective diffractive phase elements.

Fig. 2
Fig. 2

Distribution of the surface-relief depth of (a) the first PDPE (M 1) plotted as a gray-level representation and (b) the second PDPE (M 2) plotted as a gray-level representation.

Fig. 3
Fig. 3

Three-dimensional plot of the amplitude distribution of the linear polarization eigenmode (ordinary ray) with the uniform circular shaped output from M 1.

Fig. 4
Fig. 4

Three-dimensional plot of the amplitude distribution of the linear polarization eigenmode (extraordinary ray) with the uniform square shaped output from M 2.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

u1Ix, y=ρ10x, yexpi2πh1x, yn1-1/λ,
u1Ix, y=-- U1Ifx, fyexpi2πxfx+yfydfxdfy,
u2Ix, y=-- U1Ifx, fyexpi2πxfx+yfy×expikl1-λfx2-λfy21/2dfxdfy.
r2Ix, y=u2I*x, yu2Ix, y=H2ρ10, h1=expi4πh2n1-1/λ,
h2x, y=λ4πn1-1 argu2I*x, yu2Ix, y=λ4πn1-1 argH2ρ10, h1.
r2Iu2Ix, y=u2I*x, y.
u1I*x, y=-- U1I*fx, fy×exp-i2πxfx+yfydfxdfy.
ρ10x, y=r10 expi2πh1n1-1/λu1I*x, y=r10ρ10x, y=ρ10x, y,
u2IIx, y=ρ20x, yexpi2πh2x, yn2-1/λ,
r1IIx, y=u1II*x, yu1IIx, y=H1ρ20, h2=expi4πh1n2-1/λ,
h1x, y=λ4πn2-1 argu1II*x, yu1IIx, y=λ4πn2-1 argH1ρ20, h2,
u1IIx, y=-- U2IIu, vexpi2πxu+yv×expikl1-λu2-λv21/2dudv,
ρ20x, y=r20 expi2πh2n2-1/λ--×expikl1-λu2-λv21/2r1II×expikl1-λu2-λv21/2U2IIu, v×expi2πxu+yvdudv.
D=ρ202-ρ2022=--ρ202-ρ2022dxdy.
ρ10x, y=1for x2+y2a0otherwise,  ρ20x, y=1for |x|b and |y|b0otherwise.
nonuniformity=Ireal2-Ireal21/2Iideal,
SNR=I1I0,

Metrics