Abstract

We have developed an extremely small integrated microencoder whose sides are less than 1 mm long. It is 1/100 the size of conventional encoders. This microencoder consists of a laser diode, monolithic photodiodes, and fluorinated polyimide waveguides with total internal reflection mirrors. The instrument can measure the relative displacement between a grating scale and the encoder with a resolution of the order of 0.01 µm; it can also determine the direction in which the scale is moving. By using the two beams that were emitted from the two etched mirrors of the laser diode, by monolithic integration of the waveguide and photodiodes, and by fabrication of a step at the edge of the waveguide, we were able to eliminate conventional bulky optical components such as the beam splitter, the quarter-wavelength plate, bulky mirrors, and bulky photodetectors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).
  2. G. N. Rassudova, F. M. Gerasimov, “Precision diffraction gratings for metrologic purposes,” Opt. Spectrosc. 11, 136–137 (1961).
  3. R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
    [CrossRef]
  4. L. P. Boivin, “Thin-film laser-to-fiber coupler,” Appl. Opt. 13, 391–395 (1974).
    [CrossRef] [PubMed]
  5. H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, p. 182.
  6. F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
    [CrossRef]
  7. J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
    [CrossRef]
  8. J. Shimada, O. Ohguchi, R. Sawada, “Gradient-index microlens formed by ion-beam sputtering,” Appl. Opt. 31, 5230–5236 (1992).
    [CrossRef] [PubMed]
  9. R. Sawada, “Integrated optical encoder,” in Technical Digest of the Eighth International Conference on Solid-State Sensors and Actuators (Royal Swedish Academy of Engineering Sciences, Stockholm, Sweden, 1995), pp. 281–284.
    [CrossRef]
  10. T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
    [CrossRef]
  11. A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
    [CrossRef]
  12. A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
    [CrossRef]
  13. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef] [PubMed]
  14. R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
    [CrossRef]

1996 (1)

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

1992 (1)

1991 (3)

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[CrossRef]

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

1989 (3)

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
[CrossRef]

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

1984 (1)

1974 (1)

1961 (1)

G. N. Rassudova, F. M. Gerasimov, “Precision diffraction gratings for metrologic purposes,” Opt. Spectrosc. 11, 136–137 (1961).

Ban, H.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
[CrossRef]

Boivin, L. P.

Casey, H. C.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, p. 182.

Denis, H.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Desgranges, E.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Fournier, A.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Furuya, A.

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

Gerasimov, F. M.

G. N. Rassudova, F. M. Gerasimov, “Precision diffraction gratings for metrologic purposes,” Opt. Spectrosc. 11, 136–137 (1961).

Gidon, P.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Grouillet, A. M.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Hara, S.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Imamura, S.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
[CrossRef]

Jadot, J. P.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Koyabu, K.

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

Matsuura, T.

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

Nakada, H.

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

Nishi, S.

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

Ohguchi, O.

J. Shimada, O. Ohguchi, R. Sawada, “Gradient-index microlens formed by ion-beam sputtering,” Appl. Opt. 31, 5230–5236 (1992).
[CrossRef] [PubMed]

J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[CrossRef]

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Panish, M. B.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, p. 182.

Philippe, P.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Rassudova, G. N.

G. N. Rassudova, F. M. Gerasimov, “Precision diffraction gratings for metrologic purposes,” Opt. Spectrosc. 11, 136–137 (1961).

Renard, S.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Sawada, R.

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

J. Shimada, O. Ohguchi, R. Sawada, “Gradient-index microlens formed by ion-beam sputtering,” Appl. Opt. 31, 5230–5236 (1992).
[CrossRef] [PubMed]

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[CrossRef]

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

R. Sawada, “Integrated optical encoder,” in Technical Digest of the Eighth International Conference on Solid-State Sensors and Actuators (Royal Swedish Academy of Engineering Sciences, Stockholm, Sweden, 1995), pp. 281–284.
[CrossRef]

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Shimada, J.

J. Shimada, O. Ohguchi, R. Sawada, “Gradient-index microlens formed by ion-beam sputtering,” Appl. Opt. 31, 5230–5236 (1992).
[CrossRef] [PubMed]

J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[CrossRef]

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Shimokawa, F.

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Tanaka, A.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
[CrossRef]

Tanaka, H.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Uenishi, Y.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Valette, S.

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Watanabe, J.

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

Yamada, N.

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

Yokomori, K.

ACS Symp. Ser. (1)

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” ACS Symp. Ser. 412, 175–188 (1989).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

J. Electrochem. Soc. (1)

R. Sawada, J. Watanabe, H. Nakada, K. Koyabu, “Soot bonding process and its application to Si dielectric isolation,” J. Electrochem. Soc. 138, 184–189 (1991).
[CrossRef]

J. Lightwave Technol. (1)

J. Shimada, O. Ohguchi, R. Sawada, “Microlens fabricated by planar process,” J. Lightwave Technol. 9, 571–576 (1991).
[CrossRef]

J. Micromech. Microeng. (1)

A. Furuya, F. Shimokawa, T. Matsuura, R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump,” J. Micromech. Microeng. 6, 310–319 (1996).
[CrossRef]

Macromolecules (1)

T. Matsuura, N. Yamada, S. Nishi, N. Yamada, “Polyimide derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropane dianhydride or pyromellitic dianhydride,” Macromolecules 24, 5001–5005 (1991).
[CrossRef]

Opt. Spectrosc. (1)

G. N. Rassudova, F. M. Gerasimov, “Precision diffraction gratings for metrologic purposes,” Opt. Spectrosc. 11, 136–137 (1961).

Solid State Technol. (1)

S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fournier, A. M. Grouillet, H. Denis, P. Philippe, E. Desgranges, “Si-based integrated optics technologies,” Solid State Technol. 32, 69–75 (1989).

Other (3)

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical microencoder,” in Proceedings of the Fourth IEEE Workshop on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 233–238.
[CrossRef]

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, p. 182.

R. Sawada, “Integrated optical encoder,” in Technical Digest of the Eighth International Conference on Solid-State Sensors and Actuators (Royal Swedish Academy of Engineering Sciences, Stockholm, Sweden, 1995), pp. 281–284.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic of a conventional, small, high-resolution optical encoder.

Fig. 2
Fig. 2

Schematic of the initial microencoder that consists of a U-shaped laser diode with two total internal reflection mirrors, a monolithic photodiode, and thick graded-refractive-index film microlenses.

Fig. 3
Fig. 3

Two kinds of encoder that emits beams toward (a) the outer edges (type 1a) and (b) the inner edges (type 1b).

Fig. 4
Fig. 4

Relationship among k1, k2, and K, which represent the propagation vectors of the incident beam, the diffracted beam, and the grating, respectively.

Fig. 5
Fig. 5

Etched vertical wall of the laser-diode mirror.

Fig. 6
Fig. 6

Deposition of thick graded-refractive-index microlens film with refractive-index distribution n(y) in the thickness direction.

Fig. 7
Fig. 7

Scanning electron microscope photograph of the type 1b microencoder.

Fig. 8
Fig. 8

Focusing characteristics of a microlens in the (a) horizontal and (b) vertical directions compared with the absence of microlenses.

Fig. 9
Fig. 9

Interference fringe pattern in a region where two beams coincide for the type 1b encoder.

Fig. 10
Fig. 10

Reflective surface-relief grating for which we used a height of 0.85 µm and a pitch of 1.6 µm as the scale.

Fig. 11
Fig. 11

Signal intensities for (a) type 1a and (b) type 1b encoders.

Fig. 12
Fig. 12

Vibration of a single microencoder with a piezoelectric device produced two outputs shifted 90 deg relative to each other.

Fig. 13
Fig. 13

Schematic of the direction-detectable encoder. The direction was detected by use of only one chip and without any special techniques.

Fig. 14
Fig. 14

Refractive index of the polyimide blend.

Fig. 15
Fig. 15

Photograph of the direction-detectable encoder.

Fig. 16
Fig. 16

Scanning electron microscope photograph of the etched total reflection mirror of the fluorinated polyimide waveguide when etched with O2 plasma and SPP.

Fig. 17
Fig. 17

Beam profiles as a function of distance from the edge of the fluorinated polyimide waveguide for (a) a flat edge and (b) a curved edge designed to collimate.

Fig. 18
Fig. 18

Beam divergence in the (a) horizontal and (b) vertical directions.

Fig. 19
Fig. 19

(a) Sinusoidal intensities I A and I B on two photodiodes. (b) Lissajous curves obtained by positioning the I A and I B signals on horizontal and vertical coordinates.

Fig. 20
Fig. 20

Photograph of the integrated optical encoder installed in a ministage.

Fig. 21
Fig. 21

One-chip encoder that includes integrated electronic circuits.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IA+BIA+IB=C31+sinΩ+π/4+δ/2×cosπ/4+δ/2,  IA-BIA-IBC3 cosΩ+π/4+δ/2×sinπ/4-δ/2.
x/lwnw-n0/nw+n01/22+z-lwnw/nw+n0/lwnw/nw+n02=1, 

Metrics