Abstract

We propose a novel self-mixing laser diode speckle velocimeter based on autocorrelation. The self-mixing laser diode launches and receives reflected light from a moving surface that has a random reflection profile. Some portion of the scattered light backcouples into the laser cavity and causes random intensity variations in the form of speckle signals. These speckle signals obtained from a self-mixing laser diode are processed by use of autocorrelation. The linear relation between the velocity and the reciprocal of the correlation time of the speckle intensity fluctuations allows us to determine the velocity easily if proper calibration is performed. The range of the investigated velocity is 20–450 mm/s. For an aluminum target that moves at a velocity of 350 mm/s, the measurement error is less than 2%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
    [CrossRef]
  2. C. A. Schmidt-Harms, “Velocimetry of moving phase plates using speckle patterns,” Appl. Opt. 23, 2353–2358 (1984).
    [CrossRef]
  3. N. Takai, T. Iwai, T. Asakura, “Correlation distance of dynamic speckles,” Appl. Opt. 22, 170–177 (1983).
    [CrossRef] [PubMed]
  4. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  5. R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1984).
  6. G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
    [CrossRef]
  7. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993).
    [CrossRef] [PubMed]
  8. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
    [CrossRef] [PubMed]
  9. E. T. Shimizu, “Directional discrimination in the self-mixing-type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
    [CrossRef] [PubMed]
  10. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  11. S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
    [CrossRef]
  12. S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
    [CrossRef]
  13. S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
    [CrossRef]
  14. S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.
  15. T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.
  16. T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
    [CrossRef]
  17. T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
    [CrossRef]
  18. Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
    [CrossRef]

1999 (1)

1996 (1)

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

1995 (1)

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
[CrossRef]

1993 (1)

1992 (2)

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser,” Opt. Lett. 17, 819–821 (1992).
[CrossRef] [PubMed]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

1989 (1)

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

1988 (1)

1987 (1)

1984 (3)

C. A. Schmidt-Harms, “Velocimetry of moving phase plates using speckle patterns,” Appl. Opt. 23, 2353–2358 (1984).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1984).

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

1983 (1)

1981 (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

1980 (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Acket, G. A.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Asakura, T.

N. Takai, T. Iwai, T. Asakura, “Correlation distance of dynamic speckles,” Appl. Opt. 22, 170–177 (1983).
[CrossRef] [PubMed]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Boyle, W. J. O.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1984).

de Groot, P. J.

den Boef, A. J.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Donati, S.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
[CrossRef]

Gallatin, G. M.

Giuliani, G.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
[CrossRef]

Grattan, K. T. V.

Ikeda, H.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Iwai, T.

Kobayashi, K.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lenstra, D.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Macomber, S. H.

Merlo, S.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
[CrossRef]

Naito, H.

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

Nishide, K.

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

Özdemir, S. K.

Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
[CrossRef]

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Palmer, A. W.

Sawaki, T.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

Schmidt-Harms, C. A.

Shibata, T.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

Shimizu, E. T.

Shinohara, S.

Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Sumi, M.

Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Suzuki, T.

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

Takai, N.

N. Takai, T. Iwai, T. Asakura, “Correlation distance of dynamic speckles,” Appl. Opt. 22, 170–177 (1983).
[CrossRef] [PubMed]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Takasu, T.

Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
[CrossRef]

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1984).

Verbeek, B. H.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Wang, W. M.

Yoshida, H.

Ş. K. Özdemir, T. Takasu, S. Shinohara, H. Yoshida, M. Sumi, “Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes,” Appl. Opt. 38, 1968–1974 (1999).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

Appl. Opt. (6)

Appl. Phys. (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

IEEE J. Lightwave Technol. (1)

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1984).

IEEE J. Quantum Electron. (3)

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurements of displacement without ambiguity,” IEEE J. Quantum Electron. QE-31, 113–119 (1995).
[CrossRef]

IEEE Trans. Instrum. Meas. (3)

S. Shinohara, H. Naito, H. Yoshida, H. Ikeda, M. Sumi, “Compact and versatile self-mixing type laser Doppler velocimeter with direction-discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Shinohara, H. Yoshida, H. Ikeda, K. Nishide, M. Sumi, “Compact and high-precision range finder with wide dynamic range and its application,” IEEE Trans. Instrum. Meas. 41, 40–44 (1992).
[CrossRef]

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, T. Sawaki, M. Sumi, “Laser speckle velocimeter using self-mixing laser diode,” IEEE Trans. Instrum. Meas. 45, 499–503 (1996).
[CrossRef]

Opt. Lett. (1)

Other (3)

T. Takasu, Ş. K. Özdemir, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Length measurement by speckle velocimeter using two self-mixing laser diodes,” in Conference on Lasers and Electro-optics-Europe, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 200.
[CrossRef]

S. Shinohara, T. Suzuki, H. Yoshida, H. Ikeda, M. Sumi, “Acquisition of 3-D image of still or moving objects utilizing laser diode range finding speedometer,” in Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON’93), Hawaii, 1993 (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1730–1735.

T. Shibata, S. Shinohara, H. Ikeda, H. Yoshida, M. Sumi, “Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode,” in Proceedings of the Korean Automatic Control Conference (KACC’94), Taejeon, South Korea, 1994 (Korea Association of Automatic Control, Seoul, 1994), pp. 494–497.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic configuration of a self-mixing laser diode: PD, photodiode; LD, laser diode; A, amplifier.

Fig. 2
Fig. 2

Schematic diagram of the velocity measurement system: DAC, digital-to-analog converter.

Fig. 3
Fig. 3

Speckle signal waveforms obtained with a self-mixing laser diode at velocities of (a) 100 mm/s and (b) 300 mm/s.

Fig. 4
Fig. 4

Normalized autocorrelation functions of speckle signals obtained with a self-mixing laser diode for an aluminum target moving at velocities of A, 60 mm/s; B, 100 mm/s; C, 220 mm/s.

Fig. 5
Fig. 5

Correlation times of speckles from self-mixing laser diode as a function of velocity for different targets: A, steel; B, white paper; C, rubber; D aluminum.

Fig. 6
Fig. 6

Offset values for different targets when a linear fit was applied to the experimentally obtained data: A, yellow paper; B, black paper; C, white paper; D, aluminum; E, rubber.

Fig. 7
Fig. 7

Measured velocity and measurement error versus actual velocity for an aluminum target.

Fig. 8
Fig. 8

Measured velocity and measurement error versus actual velocity for a white paper target.

Fig. 9
Fig. 9

Averaged 1/τ c (■) and its standard deviation (●) as a function of velocity for an aluminum target.

Tables (1)

Tables Icon

Table 1 Values of Offset α and Slope Parameter β for Different Targets after Calibration

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ddt Et=½GNNt-N0-1/τp×Et+κτL Et-τcosΔt,
ddt ϕt=½αGNNt-NT-κτLEt-τEt sinΔt,
ddt Nt=J-Ntτs-GNNt-N0E2t,
Δt=ω0τ+ϕt-ϕt-τ,
τ=2Lext/c
κ=γ1-r2rext/r,
ω0τ=ωsτ+C sinωsτ+arctan α,
C=κτ1+α21/2τL,
Pf=P01+m cosωsτ,
P0=Jτp-1GNτs-τpτs N0,
m=2κτpτLJτp-τpτs N0P0.
fD=2V cos θ/λ.
Sf=- Rτexp-j2πfτdτ,
Rτ=- Sfexpj2πfτdf,
Yj=k=0n-1 XkXj+k,  j=-n-1, -n-2, , -1, 0, 1., n-1,
Rxxi=Yi-n-1,  i=0, 1, 2, , 2n-2.
1/τc=α+βV,
1/τc1=α+βV1,
1/τc2=α+βV2.
α=V21/τc1-V11/τc2V2-V1,
β=1/τc2-1/τc1V2-V1.
Vm=1/τcm-αβ.

Metrics