Abstract

We present a design for an optical data communications receiver–transmitter pair based on the holographic correction of a large diameter, poor-quality, reflecting primary mirror. The telescope has a narrow bandwidth (<0.1 nm) with good signal frequency isolation (>60 dB) and is scalable to meter-class apertures. We demonstrate the correction of a reflector telescope with over 2000 waves of aberration to diffraction-limited operation, capable of handling data transmission rates up to 100 GHz.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Katzman, Laser Satellite Communications (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  2. Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).
  3. S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).
  4. J. Munch, R. Wuerker, “Holographic technique for correcting aberrations in a telescope,” Appl. Opt. 28, 1312–1317 (1989).
    [CrossRef] [PubMed]
  5. J. Munch, R. Wuerker, L. Heflinger, “Wideband holographic correction of an aberrated telescope objective,” Appl. Opt. 29, 2440–2445 (1990).
    [CrossRef] [PubMed]
  6. G. Andersen, J. Munch, P. Veitch, “Holographic correction of large telescope primaries using proximal, off-axis beacons,” Appl. Opt. 35, 603–608 (1996).
    [CrossRef] [PubMed]
  7. G. Andersen, “Holographic correction of large aberrated telescopes,” Ph.D. dissertation (University of Adelaide, Adelaide, South Australia, 1996).
  8. G. Andersen, J. Munch, P. Veitch, “Compact, holographic correction of aberrated telescopes,” Appl. Opt. 36, 1427–1432 (1997).
    [CrossRef] [PubMed]
  9. R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
    [CrossRef]
  10. C. Sauteret, M. Novaro, O. Martin, “Passive pulse shaping by spectral narrowing of picosecond pulses,” Appl. Opt. 20, 1487–1490 (1981).
    [CrossRef] [PubMed]
  11. D. Bebelaar, “Compensator for the time dispersion in a monochromator,” Rev. Sci. Instrumen. 57, 1686–1687 (1986).
    [CrossRef]
  12. Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
    [CrossRef]

1997

1996

1993

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

1990

1989

1986

D. Bebelaar, “Compensator for the time dispersion in a monochromator,” Rev. Sci. Instrumen. 57, 1686–1687 (1986).
[CrossRef]

1981

1972

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

1971

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Andersen, G.

Andreev, R. B.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Bebelaar, D.

D. Bebelaar, “Compensator for the time dispersion in a monochromator,” Rev. Sci. Instrumen. 57, 1686–1687 (1986).
[CrossRef]

Bor, Z.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Denisyuk, Y. N.

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Hazim, H. A.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Heflinger, L.

Hilbert, M.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Irtuganov, V. M.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Katzman, M.

M. Katzman, Laser Satellite Communications (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Leshchev, A. A.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Martin, O.

Munch, J.

Novaro, M.

Racz, B.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Sauteret, C.

Semenov, P. M.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Soskin, S. I.

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Szabo, G.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Vasil’ev, M. V.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Veitch, P.

Venediktov, V. Y.

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Wuerker, R.

Appl. Opt.

Opt. Eng.

Z. Bor, B. Racz, G. Szabo, M. Hilbert, H. A. Hazim, “Femtosecond pulse front tilt caused by angular dispersion,” Opt. Eng. 32, 2501–2504 (1993).
[CrossRef]

Opt. Spectrosc.

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Rev. Sci. Instrumen.

D. Bebelaar, “Compensator for the time dispersion in a monochromator,” Rev. Sci. Instrumen. 57, 1686–1687 (1986).
[CrossRef]

Other

M. Katzman, Laser Satellite Communications (Prentice-Hall, Englewood Cliffs, N.J., 1987).

R. B. Andreev, V. M. Irtuganov, A. A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with overall compensation for distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

G. Andersen, “Holographic correction of large aberrated telescopes,” Ph.D. dissertation (University of Adelaide, Adelaide, South Australia, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Recording. Collimated laser light reflects off the mirror and through secondary optics to combine with a reference beam to write the hologram. (b) Replay. A collimated light wave passes through the system to reconstruct the reference beam.

Fig. 2
Fig. 2

Reconstruction analysis: (a) the uncorrected focal spot (vertical dimension of box ∼45 mm), (b) magnified image of the focal spot of the reconstructed beam (vertical dimension of box ∼100 µm), (c) interferogram of the reconstructed reference beam demonstrating correction to λ/10.

Fig. 3
Fig. 3

Broadband operation. The spots produced at wavelengths of ±40, ±20, ±10, and ±5 nm (from outside in) from the central wavelength of 532 nm (center). The center-to-center separation of the two outer spots is 26.5 mm.

Fig. 4
Fig. 4

Narrowband response. The power of a reconstructed signal beam focused through a 100-µm limiting aperture plotted as a function of wavelength difference from the recording wavelength of 532 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pr=PtLGtGrηtηr,
F=|λ1-λ2|λ2,

Metrics