Abstract

Rayleigh–Mie lidar measurements of stratospheric temperature and aerosol profiles have been carried out at Reunion Island (southern tropics) since 1993. Since June 1998, an operational extension of the system is permitting additional measurements of tropospheric ozone to be made by differential absorption lidar. The emission wavelengths (289 and 316 nm) are obtained by stimulated Raman shifting of the fourth harmonic of a Nd:YAG laser in a high-pressure deuterium cell. A mosaic of four parabolic mirrors collects the backscattered signal, and the transmission is processed by the multiple fiber collector method. The altitude range of ozone profiles obtained with this system is 3–17 km. Technical details of this lidar system working in the southern tropics, comparisons of ozone lidar profiles with radiosondes, and scientific perspectives are presented. The significant lack of tropospheric ozone measurements in the tropical and equatorial regions, the particular scientific interest in these regions, and the altitude range of the ozone measurements to 16–17 km make this lidar supplement useful and its adaptation technically conceivable at many Rayleigh–Mie lidar stations.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. World Meteorological Organization, “Scientific assessment on ozone depletion,” (World Health Organization, Geneva, 1994).
  2. S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
    [CrossRef]
  3. I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
    [CrossRef]
  4. H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
    [CrossRef]
  5. J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
    [CrossRef]
  6. J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
    [CrossRef]
  7. K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
    [CrossRef]
  8. J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
    [CrossRef]
  9. M. J. Kurylo, S. Solomon, “Network for the detection of stratospheric change: a status and implementation report,” (NASA, Washington, D.C., 1990).
  10. H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.
  11. J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,535–25,585 (1994).
  12. G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997).
    [CrossRef]
  13. J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
    [CrossRef]
  14. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential absorption lidar measurements of tropospheric ozone with an excimer–Raman hybrid laser,” Opt. Lett. 8, 347–349 (1983).
    [CrossRef] [PubMed]
  15. G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
    [CrossRef]
  16. L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
    [CrossRef]
  17. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
    [CrossRef]
  18. J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
    [CrossRef] [PubMed]
  19. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
    [CrossRef]
  20. Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
    [CrossRef]
  21. M. H. Proffitt, A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
    [CrossRef] [PubMed]
  22. L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
    [CrossRef]
  23. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
    [CrossRef]
  24. K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
    [CrossRef]
  25. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  26. A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
    [CrossRef] [PubMed]
  27. G. Ancellet, F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509–5521 (1998).
    [CrossRef]
  28. L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [CrossRef]
  29. S. L. Valley, Handbook of Geophysics and Space Environments, Atmospheric Optics (McGraw-Hill, New York, 1965), Chap. 7, pp. 1–36.
  30. D. B. Rensch, R. K. Long, “Comparative studies of extinction and backscattering by aerosols, fog, and rain at 10.6 and 0.63 µm,” Appl. Opt. 9, 1563–1573 (1970).
    [CrossRef] [PubMed]
  31. D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
    [CrossRef]
  32. L. De Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. Van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
    [CrossRef] [PubMed]
  33. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  34. H. S. Lee, G. Schwemmer, C. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
    [CrossRef] [PubMed]
  35. R. M. Measure, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  36. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  37. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  38. E. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  39. V. A. Kovalev, J. L. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994).
    [CrossRef] [PubMed]
  40. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-section of ozone: measurements, results and error analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass., 1984), p. 606.
  41. A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
    [CrossRef]
  42. S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993).
    [CrossRef]
  43. D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for non-linear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
    [CrossRef] [PubMed]
  44. J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
    [CrossRef]
  45. L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997).
    [CrossRef]
  46. R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985).
    [CrossRef]

1999 (1)

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

1998 (5)

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

G. Ancellet, F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509–5521 (1998).
[CrossRef]

1997 (6)

M. H. Proffitt, A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
[CrossRef] [PubMed]

L. De Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. Van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997).
[CrossRef]

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997).
[CrossRef]

1996 (4)

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

1994 (5)

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,535–25,585 (1994).

V. A. Kovalev, J. L. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994).
[CrossRef] [PubMed]

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

1993 (3)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
[CrossRef]

S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993).
[CrossRef]

D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for non-linear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
[CrossRef] [PubMed]

1992 (1)

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

1990 (3)

1989 (1)

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

1986 (1)

L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

1985 (3)

1983 (1)

1982 (1)

J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

1981 (1)

1980 (1)

1978 (1)

1976 (1)

A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

1970 (1)

Ancellet, G.

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

G. Ancellet, F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509–5521 (1998).
[CrossRef]

G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997).
[CrossRef]

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

Ansmann, A.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Apituley, A.

Badr, A.

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

Baldy, S.

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

Bandy, A. R.

R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985).
[CrossRef]

Baray, J. L.

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

Barnes, R. A.

R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985).
[CrossRef]

Bass, A. M.

A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-section of ozone: measurements, results and error analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass., 1984), p. 606.

Beekmann, M.

G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997).
[CrossRef]

Bencherif, H.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Bessafi, M.

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Browell, E.

Calpini, B.

Cammas, J. P.

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

Carnuth, W.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Carswell, A. I.

Castagnoli, F.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Chanin, M. L.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
[CrossRef]

Chatfield, R.

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

Chen, Y.

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

De Schoulepnikoff, L.

Del Guasta, M.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Dirieux, E.

Dombrowski, M.

Donovan, D. P.

Durieux, E.

L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Fassina, F.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Fiorani, L.

L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997).
[CrossRef]

Folkins, I.

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

Godin, S.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Gong, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

Gouget, H.

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

Halldorsson, T.

Haner, D. A.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Hauchecorne, A.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
[CrossRef]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Heikes, B.

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

Heinselman, C. J.

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Hu, H.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

Ismail, S.

Jacobi-Koaly, S.

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

Jaquet, L.

L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997).
[CrossRef]

Jonquières, I.

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

Keckhut, P.

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
[CrossRef]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Kempfer, U.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Klett, J. D.

Korb, C.

Kovalev, V. A.

Kurylo, M. J.

M. J. Kurylo, S. Solomon, “Network for the detection of stratospheric change: a status and implementation report,” (NASA, Washington, D.C., 1990).

Lan Sun Luk, D.

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

Lane, A. L.

S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993).
[CrossRef]

Langerholc, J.

Langford, A. O.

Laufer, A. H.

A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Ledford, A. E.

A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Lee, H. S.

Leveau, J.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Logan, J. A.

J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,535–25,585 (1994).

Long, R. K.

Lotz, R.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Maeda, M.

Manatt, S. L.

S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993).
[CrossRef]

Marenco, A.

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

McDermid, I. S.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

McElroy, J. L.

Measure, R. M.

R. M. Measure, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Mégie, G.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Menzies, R. T.

Mitev, V.

Miyazoe, Y.

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Morandi, M.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Nédelec, P.

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

Neuber, R.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Nielsen, N. B.

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Papayannis, A.

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

Paur, R. J.

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-section of ozone: measurements, results and error analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass., 1984), p. 606.

Pelon, J.

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

Porteneuve, J.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Prasad, C.

Proffitt, M. H.

Rairoux, P.

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Randriambelo, T.

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

Ravetta, F.

Reichardt, J.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Rensch, D. B.

Rosset, R.

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

Sacco, V. M.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Sassen, K.

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

Schwemmer, G.

Serwazi, M.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Shipley, S.

Simeonov, V.

Singh, H.

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

Smit, H. G. J.

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

Sohn, J.

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Solomon, S.

M. J. Kurylo, S. Solomon, “Network for the detection of stratospheric change: a status and implementation report,” (NASA, Washington, D.C., 1990).

Stefanutti, L.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Suhre, K.

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

Sunesson, J. A.

Swart, D. P. J.

Taupin, F. G.

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

Thayer, J. P.

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Tokunaga, M.

Torres, A. L.

R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985).
[CrossRef]

Trickl, T.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Uchino, O.

Valley, S. L.

S. L. Valley, Handbook of Geophysics and Space Environments, Atmospheric Optics (McGraw-Hill, New York, 1965), Chap. 7, pp. 1–36.

Van Den Bergh, H.

Wandinger, U.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

Wang, Z.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

Warren, R. E.

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Weitkamp, C.

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

Whiteway, J. A.

Zhou, J.

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

Zuccagnoli, L.

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Appl. Opt. (15)

J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

M. H. Proffitt, A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
[CrossRef] [PubMed]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

G. Ancellet, F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509–5521 (1998).
[CrossRef]

L. De Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. Van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

H. S. Lee, G. Schwemmer, C. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef] [PubMed]

E. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

V. A. Kovalev, J. L. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994).
[CrossRef] [PubMed]

D. B. Rensch, R. K. Long, “Comparative studies of extinction and backscattering by aerosols, fog, and rain at 10.6 and 0.63 µm,” Appl. Opt. 9, 1563–1573 (1970).
[CrossRef] [PubMed]

D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for non-linear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
[CrossRef] [PubMed]

L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997).
[CrossRef]

Appl. Phys. B (1)

L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992).
[CrossRef]

Appl. Phys. B. (1)

Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996).
[CrossRef]

Atmos. Environ. (2)

G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Geophys. Res. Lett. (1)

I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998).
[CrossRef]

J. Geophys. Res. (8)

J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998).
[CrossRef]

J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999).
[CrossRef]

H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996).
[CrossRef]

S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996).
[CrossRef]

J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,535–25,585 (1994).

J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. A (1)

A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Nature (1)

K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997).
[CrossRef]

Opt. Eng. (2)

J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996).
[CrossRef]

J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Other (6)

M. J. Kurylo, S. Solomon, “Network for the detection of stratospheric change: a status and implementation report,” (NASA, Washington, D.C., 1990).

H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.

World Meteorological Organization, “Scientific assessment on ozone depletion,” (World Health Organization, Geneva, 1994).

S. L. Valley, Handbook of Geophysics and Space Environments, Atmospheric Optics (McGraw-Hill, New York, 1965), Chap. 7, pp. 1–36.

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-section of ozone: measurements, results and error analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass., 1984), p. 606.

R. M. Measure, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic representation of the Reunion lidar system: 1, laser; 2, KDP crystals; 3, 266-nm beam; 4, polarized channel telescope; 5, B channel telescope; 6, Raman cell; 7, divergence optimizer; 8, 289–316-nm beam; 9, 532–1064-nm beam; 10, Rayleigh afocal dioptric; 11, location of optical fiber fixation; 12, spectrometer; 13, PMT’s; 14, B channel telescope; 15, 532–1064-nm beam; 16, 266-nm removable mirror. For ozone measurements the removable mirror (16) deflects the 266-nm beam, which is then deflected upward in the Raman cell. For Rayleigh measurements, mirror 16 is turned off and the 532–1064-nm beam is deflected upward at the middle of the four parabolic mirrors (14).

Fig. 2
Fig. 2

Modeled wintertime backscatter return photon counting, for the 289–316-nm wavelength couple, compared with typical counting saturation and sky noise levels.

Fig. 3
Fig. 3

Optical system used to minimize the divergence of the UV emitted beams (289 and 316 nm).

Fig. 4
Fig. 4

MFC system: 1, UV emitted beam; 2, visible emitted beam (for stratospheric temperature and aerosol measurements); 3, UV fiber; 4, visible fiber; 5, receiving telescopes. For each telescope the linear distance d = 3.3 mm between the two fibers corresponds to the angular distance α between the two beams.

Fig. 5
Fig. 5

Spectrometer formed by a holographic grating and two spherical mirrors: 1, four-fiber terminal transmitting the 289–316-nm beam; 2, adaptive lens; 3, 3600-line/mm grating; 4,289-nm PMT; 5, adaptive lens; 6, 316-nm PMT; 7, spherical mirror.

Fig. 6
Fig. 6

Algorithm to calculate ozone profiles from raw data.

Fig. 7
Fig. 7

Range derivative of the logarithm of the range-corrected lidar signal corresponding to photocounting (dashed curves) and analog (solid curves) detection of the two wavelengths 289 and 316 nm on 26 June 1998. We computed the range-corrected profiles by exponentially correcting the sky noise signal over 21 km for the 289-nm channel and over 31 km for the 316-nm channel. The connection between analog and photocounting channels was made between 7 and 8 km. In this and the following figures the data on which the measurements were made are given in day–month–year order, followed by the local time (hours–minutes-seconds) during which the measurements were made.

Fig. 8
Fig. 8

Corresponding ozone profile (see Fig. 7) for 26 June 1998.

Fig. 9
Fig. 9

Ozone concentrations obtained by lidar on 1 July 1998 (acquisition time, 1 h and 25 min) compared with the profile obtained by an ECC sonde 5 h later. Solid curve, lidar profiles; dotted curves, statistical error intervals for lidar measurements; dashed curves, ECC profiles.

Fig. 10
Fig. 10

Ozone concentrations obtained by lidar on 29 July 1998 (acquisition time, 2 h and 20 min) compared with the profile obtained nearly simultaneously by electrochemical sonde.

Fig. 11
Fig. 11

Ozone mixing ratio evolution during the time from 14:25:44 (profile A) to 16:47:51 (profile G) universal time as observed by lidar at Reunion on 29 July 1998. The temporal file summation is 20 min (36,000 shots). The profiles have been offset successively by 50 ppbv.

Tables (4)

Tables Icon

Table 1 Nighttime Measurements of the Reunion Lidar Station from 1994 to 1999

Tables Icon

Table 2 Available Wavelengths with a Nd:YAG Laser and Typical Efficiencies of Stimulated Raman Scattering in Hydrogen and Deuterium

Tables Icon

Table 3 Emission Characteristics

Tables Icon

Table 4 Calculation as a Function of Height Z of Defocalization Distance Df, Parallax P, Spot Size Tz, and Spot Size in the Focal Plane Tf for the Optical Fiber Dedicated for Ozone Measurements and of Geometrical Factor Fg for the Optical Fiber Dedicated for Rayleigh Measurementsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sr, λ=Aλr2 βr, λexp-2 0r αr, λdr,
cO3=12Δσddr lnpoffpon.
cO3=12Δσddr lnpoffpon-12Δσddr lnβoffβon-ΔαΔσ.

Metrics