Abstract

An encrypted optical memory system that uses a wavelength code as well as input and Fourier-plane random phase codes is proposed. Original data are illuminated by a coherent light source with a specified wavelength and are then encrypted with two random phase codes before being stored holographically in a photorefractive material. Successful decryption requires the use of a readout beam with the same wavelength as that used in the recording, in addition to the correct phase key in the Fourier plane. The wavelength selectivity of the proposed system is evaluated numerically. We show that the number of available wavelength keys depends on the correlation length of the phase key in the Fourier plane. Preliminary experiments of encryption and decryption of optical memory in a LiNbO3:Fe photorefractive crystal are demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  2. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  3. H.-Y. Li, Y. Qiao, D. Psaltis, “Optical neural network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
    [CrossRef] [PubMed]
  4. C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).
    [CrossRef]
  5. H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  6. B. Javidi, G. Zhang, J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997).
    [CrossRef] [PubMed]
  7. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]
  8. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 11, 915–917 (1993).
    [CrossRef]
  9. J.-J. R. Drolet, E. Chuang, G. Barbastathis, D. Psaltis, “Compact, integrated dynamic memory with refreshed holograms,” Opt. Lett. 22, 552–554 (1997).
    [CrossRef] [PubMed]
  10. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  11. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  12. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  13. Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
    [CrossRef] [PubMed]
  14. F. Goudail, F. Bollaro, B. Javidi, P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998).
    [CrossRef]

1998 (2)

1997 (4)

1995 (2)

1994 (2)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (2)

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 11, 915–917 (1993).
[CrossRef]

H.-Y. Li, Y. Qiao, D. Psaltis, “Optical neural network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Barbastathis, G.

Bashaw, M. C.

H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bollaro, F.

Chuang, E.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Drolet, J.-J. R.

Goudail, F.

Heanue, H. F.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Javidi, B.

Joseph, J.

Kang, Y. H.

Kim, K. H.

Lee, B.

Leyva, V.

Li, H.-Y.

Li, J.

Mok, F. H.

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 11, 915–917 (1993).
[CrossRef]

Paek, E. G.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Psaltis, D.

Qiao, Y.

Rakuljic, G. A.

Réfrégier, P.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Singh, K.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Unnikrishnan, G.

Watson, C. I.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).
[CrossRef]

Wilson, C. L.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).
[CrossRef]

Yariv, A.

Zhang, G.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Eng. (1)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of encrypted optical memory with a wavelength key and two random phase codes.

Fig. 2
Fig. 2

Mean absolute errors between original and reconstructed data as a function of wavelength difference between recording and readout beams.

Fig. 3
Fig. 3

Segment of original, encrypted, and reconstructed data. (a) Original and encrypted data, (b) original and reconstructed data.

Fig. 4
Fig. 4

Experimental setup: BS’s, beam splitters; L’s, lenses; BE, beam expander; M’s, mirrors; RPM, random phase mask; CCD’s, CCD cameras; SH’s, shutters.

Fig. 5
Fig. 5

(a) Original image to be encrypted and (b) the encrypted image.

Fig. 6
Fig. 6

Reconstructed images read out by beams at wavelengths of (a) 514.5 nm and (b) 632.8 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Sν, η=Gν, ηHν, η,
Gν, η=Fgx, yexp-jk0nx, y.
sx, y=gx, yexp-jk0nx, yFexp-jk0hν, η,
Sν, η=G*γν, γηH*γν, γηRν, η,
Rν, η=exp-jk1rν, η.
sx, y=g*x, yexpjk0nx, yCx, y,
Cx, y=Fexp-jk0hγν, γηFexp-jk1rν, η.
Sν=G*γνexpjhγν-hν,
sx=g*xexpjnxFexp-jhγνFexp-jhν,
MAE=n=1N |gnΔx-gnΔx|/N,

Metrics