Abstract

An efficient method for optically actuating a micromechanical cantilever is presented for the first time to our knowledge. Measurable responses can be obtained for moderate light sources if electron tunneling occurs between the cantilever tip and a metallic contact below it. The small deflection of the cantilever that is due to light pressure is sufficient then to produce large tunneling current variations. On the basis of this effect several applications such as a miniaturized spectrum analyzer and one-step optical computing units for addition, integration, or differentiation of one-dimensional or two-dimensional optical signals are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Adams, E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21, 1–79 (1997).
    [CrossRef]
  2. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
    [CrossRef]
  3. H. Fujita, “Microactuators and micromachines,” Proc. IEEE 86, 1721–1733 (1998).
    [CrossRef]
  4. J. D. Patterson, “Micro-mechanical voltage tunable Fabry–Perot filters formed in (111) silicon,” NASA Tech. Paper 3702 (NASA, Langley Research Center, Hampton Va., 1997), pp. 8–9.
  5. S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
    [CrossRef]
  6. M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
    [CrossRef]
  7. M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
    [CrossRef]
  8. D. Dragoman, M. Dragoman, “Tunneling time asymmetry in resonant quantum structures,” IEEE J. Quantum Electron. 32, 1150–1154 (1996).
    [CrossRef]
  9. D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer, Heidelberg, 1999).

1998

H. Fujita, “Microactuators and micromachines,” Proc. IEEE 86, 1721–1733 (1998).
[CrossRef]

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
[CrossRef]

1997

C. S. Adams, E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21, 1–79 (1997).
[CrossRef]

D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997).
[CrossRef]

1996

D. Dragoman, M. Dragoman, “Tunneling time asymmetry in resonant quantum structures,” IEEE J. Quantum Electron. 32, 1150–1154 (1996).
[CrossRef]

1991

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

1989

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Adams, C. S.

C. S. Adams, E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21, 1–79 (1997).
[CrossRef]

Cada, M.

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

Dana, A.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
[CrossRef]

Dragoman, D.

D. Dragoman, M. Dragoman, “Tunneling time asymmetry in resonant quantum structures,” IEEE J. Quantum Electron. 32, 1150–1154 (1996).
[CrossRef]

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer, Heidelberg, 1999).

Dragoman, M.

D. Dragoman, M. Dragoman, “Tunneling time asymmetry in resonant quantum structures,” IEEE J. Quantum Electron. 32, 1150–1154 (1996).
[CrossRef]

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer, Heidelberg, 1999).

Fujita, H.

H. Fujita, “Microactuators and micromachines,” Proc. IEEE 86, 1721–1733 (1998).
[CrossRef]

Kaiser, W. J.

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Koehler, D. R.

McCord, M. A.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
[CrossRef]

Patterson, J. D.

J. D. Patterson, “Micro-mechanical voltage tunable Fabry–Perot filters formed in (111) silicon,” NASA Tech. Paper 3702 (NASA, Langley Research Center, Hampton Va., 1997), pp. 8–9.

Pease, R. F. W.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
[CrossRef]

Reinhart, F. K.

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

Riis, E.

C. S. Adams, E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21, 1–79 (1997).
[CrossRef]

Stauffer, J. M.

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

Vasey, F.

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

Waltman, S. B.

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Appl. Phys. Lett.

M. Cada, F. Vasey, J. M. Stauffer, F. K. Reinhart, “Multiple-quantum well nonlinear waveguide grating device,” Appl. Phys. Lett. 59, 2366–2368 (1991).
[CrossRef]

IEEE J. Quantum Electron.

D. Dragoman, M. Dragoman, “Tunneling time asymmetry in resonant quantum structures,” IEEE J. Quantum Electron. 32, 1150–1154 (1996).
[CrossRef]

J. Micromechanics Microeng.

M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromechanics Microeng. 8, 209–212 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Proc. IEEE

H. Fujita, “Microactuators and micromachines,” Proc. IEEE 86, 1721–1733 (1998).
[CrossRef]

Prog. Quantum Electron.

C. S. Adams, E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21, 1–79 (1997).
[CrossRef]

Sens. Actuators

S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989).
[CrossRef]

Other

J. D. Patterson, “Micro-mechanical voltage tunable Fabry–Perot filters formed in (111) silicon,” NASA Tech. Paper 3702 (NASA, Langley Research Center, Hampton Va., 1997), pp. 8–9.

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices, Vol. 1 of Springer Series in Photonics (Springer, Heidelberg, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of an optically actuated cantilever.

Fig. 2
Fig. 2

Deflection of the cantilever in the absence (solid curve) and presence (dashed curve) of an incident optical power of 0.1 W. See text for the values of the other parameters.

Fig. 3
Fig. 3

Schematic diagram of the setup in which an array of cantilevers acts as a spectrum analyzer.

Fig. 4
Fig. 4

Dependence of the reflection coefficient of a silicon cantilever on the wavelength for two values of the cantilever thickness: 0.3 µm (solid curve) and 0.5 µm (dashed curve).

Fig. 5
Fig. 5

Required dependence of the widths of the cantilevers in the array on the wavelength component incident on them for a spectrum analyzer with constant sensitivity over the entire bandwidth. The widths are normalized to the width of the cantilever on which the wavelength component λ0 = 1.3 µm is incident.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

popt=Fopt/A=2RS/c,
d2ydx2=MxEI,
Mx=1Lx=xLFelx+Foptxx-xdx,
yx=h-60Et3V2h+t/r2L2x24-Lx36+x424-24RScELt3x5120-L2x312+L3x26=h-δelx-δoptx.
I=I0 exp-22m0ϕ1/2yL/,
Ps=Pmin-exp-x2/w2dx -exp-z2/w2dz-L/2L/2exp-x2/w2dx -W/2W/2exp-z2/w2dz.
n2λ1+10.66λ2λ2-0.32+0.003λ2λ2-1.132,
Rλ=n2λ-12 sin22πnλt/λ4n2λ+n2λ-12 sin22πnλt/λ,
Rλ/Wλ=Rλ0/Wλ0,
dzdλ=fmd cos β,
Δλ=d cos βfmW+ΔW,

Metrics