Abstract

Single-particle levitation in conjunction with 264.3-nm laser excitation is used to measure the fluorescence emission of individual particles of Bacillus globigii spores. With precise humidity control, the fluorescence emission of wetted and desiccated Bacillus spore particles is measured from 300 to 450 nm. Comparison of spectra for Bacillus spores suspended in a standard buffer aqueous solution and for a desiccated 10-µm-diameter aggregate Bacillus spore particle shows that the spectra is virtually indistinguishable. However, at 85% relative humidity, corresponding to a 4.5M sodium chloride solution, the spore spectra redshifts by approximately 25 nm. It is postulated that the spectra redshifting is a result of specific interactions between the tyrosine fluorophore of the Bacillus spore and the phosphate moieties in the buffer solution.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
    [CrossRef] [PubMed]
  2. J. R. Lakowicz, “Principles of fluorescence spectroscopy,” in Effects of Solvents on Fluorescence Emission (Plenum, New York, 1983), Chap. 7.
  3. K. H. Fung, I. N. Tang, “Relative Raman scattering cross-section measurements with suspended particles,” Appl. Spectrosc. 45, 734–737 (1991).
    [CrossRef]
  4. V. E. Lippert, “Spektroskopische Bestimmung des Dipolomomentes aromatischer Verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).
  5. R. A. Robinson, R. H. Stokes, Electrolyte Solutions, 2nd ed. (Butterworth Scientific, London, 1959), pp. 18–21.
  6. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press, Boca Raton, Fla., 1981), pp. 232–233.

1997 (1)

1991 (1)

1957 (1)

V. E. Lippert, “Spektroskopische Bestimmung des Dipolomomentes aromatischer Verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Bronk, B. V.

Copeland, R. A.

Faris, G. W.

Fung, K. H.

Lakowicz, J. R.

J. R. Lakowicz, “Principles of fluorescence spectroscopy,” in Effects of Solvents on Fluorescence Emission (Plenum, New York, 1983), Chap. 7.

Lippert, V. E.

V. E. Lippert, “Spektroskopische Bestimmung des Dipolomomentes aromatischer Verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Mortelmans, K.

Robinson, R. A.

R. A. Robinson, R. H. Stokes, Electrolyte Solutions, 2nd ed. (Butterworth Scientific, London, 1959), pp. 18–21.

Stokes, R. H.

R. A. Robinson, R. H. Stokes, Electrolyte Solutions, 2nd ed. (Butterworth Scientific, London, 1959), pp. 18–21.

Tang, I. N.

Appl. Opt. (1)

Appl. Spectrosc. (1)

Z. Electrochem. (1)

V. E. Lippert, “Spektroskopische Bestimmung des Dipolomomentes aromatischer Verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Other (3)

R. A. Robinson, R. H. Stokes, Electrolyte Solutions, 2nd ed. (Butterworth Scientific, London, 1959), pp. 18–21.

R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press, Boca Raton, Fla., 1981), pp. 232–233.

J. R. Lakowicz, “Principles of fluorescence spectroscopy,” in Effects of Solvents on Fluorescence Emission (Plenum, New York, 1983), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup for the measurement of the fluorescence emission of single particles of BG spores.

Fig. 2
Fig. 2

□, water uptake and ○, release by a 10-µm-diameter BG spore particle as measured in a single-particle electrodynamic quadrapole levitater. Particle generated from a 1.25M sodium chloride buffer solution.

Fig. 3
Fig. 3

Fluorescence emission of BG spores as measured from a stock buffer solution (1.25M NaCl), a single particle at 85% relative humidity, rh, and for a dry particle. Particle diameter is 10 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

νa-νf2hc-12+1-n2-12n2+1μ*-μ2a3+const.
=2Δc+0,

Metrics