Abstract

The effect of temperature on the optical and thermal properties of pure and indocyanine green-doped albumin protein solders as a function of wavelength has been studied between 25 °C and 100 °C. An increase in the group refractive index by up to 4% and a decrease in absorption coefficient (∼800 nm) by up to 8%, after denaturing the solder specimens in a constant-temperature water bath at temperatures of 60–100 °C, were not significant. The reduced scattering coefficient, however, increased rapidly with temperature as the solder changed from being a highly nonscattering medium at room temperature to a highly scattering medium at temperatures close to 70 °C. The thermal conductivity, thermal diffusivity, and heat capacity increased by up to 30%, 15%, and 10%, respectively. Finally, the frequency factor and activation energy were measured to be 3.17 × 1056 s-1 and 3.79 × 105 J mol-1, respectively, for liquid protein solders (25% bovine serum albumin) and 3.50 × 1057 s-1 and 3.85 × 105 J mol-1, respectively, for solid protein solders (60% bovine serum albumin). Incorporation of dynamic optical and thermal properties into modeling studies of laser tissue interactions could have a significant influence on the determination of the expected zone of damage.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
    [PubMed]
  2. A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
    [CrossRef]
  3. E. Chan, “Laser tissue welding: effects of solder coagulation and tissue optical properties,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1997).
  4. K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
    [CrossRef]
  5. K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
    [CrossRef]
  8. Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
    [CrossRef] [PubMed]
  9. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 131–206.
    [CrossRef]
  10. S. A. Prahl, “Light distribution in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1988).
  11. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
    [CrossRef]
  12. J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
    [CrossRef]
  13. D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
    [PubMed]
  14. Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.
  15. F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489 (1947).
  16. A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20, 1471–1481 (1984).
    [CrossRef]
  17. R. Agah, “Quantitative characterisation of arterial tissue damage,” M.S.E. thesis (University of Texas at Austin, Austin, Texas, 1988).
  18. S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
    [CrossRef]
  19. R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
    [CrossRef] [PubMed]
  20. S. Thomsen, “Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
    [PubMed]
  21. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  22. S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
    [CrossRef] [PubMed]
  23. R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
    [CrossRef] [PubMed]
  24. M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
    [CrossRef]
  25. Z. F. Gourgouliatos, “Behaviour of optical properties of tissue as a function of temperature,” M.S. thesis (University of Texas at Austin, Austin, Texas, 1986).
  26. I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).
    [CrossRef] [PubMed]
  27. R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
    [CrossRef]
  28. D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
    [CrossRef]
  29. J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
    [CrossRef] [PubMed]
  30. G. Pico, “Thermodynamic aspects of the thermal stability of human serum albumin,” Biochem. Mol. Biol. Int. 36, 1017–1023 (1995).
    [PubMed]
  31. G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).
  32. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
    [PubMed]
  33. Becton Dickinson and Company product information sheet 0260031, Becton Dickinson Microbiology Systems, 250 Schilling Circle, Cockeysville, Md. 21030.
  34. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  35. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  36. S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988).
    [CrossRef]
  37. M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
    [CrossRef] [PubMed]
  38. X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
    [CrossRef] [PubMed]
  39. M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
    [CrossRef] [PubMed]
  40. G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).
  41. T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
    [CrossRef]
  42. T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
    [CrossRef]
  43. J. C. Chato, “Selected thermophysical properties of biological materials,” in Heat Transfer in Medicine and Biology: Analysis and Applications, A. Shitzer, R. C. Eberhart, eds. (Plenum, New York, 1985), Vol. 2.

1999

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

1996

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

1995

G. Pico, “Thermodynamic aspects of the thermal stability of human serum albumin,” Biochem. Mol. Biol. Int. 36, 1017–1023 (1995).
[PubMed]

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

1994

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).

T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
[CrossRef]

1993

I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef] [PubMed]

D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
[PubMed]

1992

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

1991

S. Thomsen, “Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

1990

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

1989

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef]

1987

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
[CrossRef] [PubMed]

1985

J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[CrossRef]

1984

A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20, 1471–1481 (1984).
[CrossRef]

1981

D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
[CrossRef]

1976

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

1947

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489 (1947).

Agah, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

R. Agah, “Quantitative characterisation of arterial tissue damage,” M.S.E. thesis (University of Texas at Austin, Austin, Texas, 1988).

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Anderson, G. S.

G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).

Anderson, G. T.

D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
[PubMed]

Anvari, B.

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

Asshauer, T.

T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

Bass, L. S.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Beek, J. F.

T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
[CrossRef]

Bonner, R. F.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Chan, E.

E. Chan, “Laser tissue welding: effects of solder coagulation and tissue optical properties,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1997).

Chan, E. K.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

Chang, D. T.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Change, M. C.

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

Chato, J. C.

J. C. Chato, “Selected thermophysical properties of biological materials,” in Heat Transfer in Medicine and Biology: Analysis and Applications, A. Shitzer, R. C. Eberhart, eds. (Plenum, New York, 1985), Vol. 2.

Cilesiz, I. F.

Clark, D. C.

D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
[CrossRef]

Cochran, J. R.

J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[CrossRef]

Connor, J. P.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Dawes, J. M.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

de Certaines, J.

J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
[CrossRef] [PubMed]

Delacretaz, G. P.

T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

Diller, E. R.

J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[CrossRef]

Ettedgui, E.

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gallier, J.

J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Gardner, C. M.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

Glinsky, M. E.

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
[CrossRef]

Gourgouliatos, Z. F.

Z. F. Gourgouliatos, “Behaviour of optical properties of tissue as a function of temperature,” M.S. thesis (University of Texas at Austin, Austin, Texas, 1986).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Henriques, F. C.

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489 (1947).

Hensle, T. W.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
[CrossRef]

Jerath, M. R.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

Kirsch, A. J.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

LeCarpentier, G.

Libutti, S. K.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Liley, P. E.

Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

London, R. A.

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
[CrossRef]

Mannonen, I.

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Martin, A. D.

G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).

McNally, K. M.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

Menovsky, T.

T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
[CrossRef]

Miller, M. I.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Milner, T. E.

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Motamedi, M.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Nelson, J. S.

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

Nossal, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Nowygrod, R.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Olsson, C. A.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Owen, E. R.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

Oz, M. C.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988).
[CrossRef]

Pearce, J. A.

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

Pico, G.

G. Pico, “Thermodynamic aspects of the thermal stability of human serum albumin,” Biochem. Mol. Biol. Int. 36, 1017–1023 (1995).
[PubMed]

Prahl, S. A.

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. A. Prahl, “Light distribution in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1988).

Praveen, D.

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rastegar, S.

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Rivet, P.

J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
[CrossRef] [PubMed]

Rosen, J.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Rylander, H. G.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Saxena, S. C.

Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.

Schumen, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, J.

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Shabsigh, R.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Si, M. S.

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

Smith, L. J.

D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
[CrossRef]

Song, L.

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

Sorg, B. S.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

Spears, J. R.

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

Sriram, P. S.

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

Star, W. M.

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 131–206.
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Straight, R. C.

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Thomsen, S.

S. Thomsen, “Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Torres, J.

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

Touloukian, Y. S.

Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.

Treat, M. R.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Valvano, J. W.

D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
[PubMed]

J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[CrossRef]

van Gemert, M. J. C.

T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
[CrossRef]

M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef]

Wang, X.

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

Welch, A. J.

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef] [PubMed]

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef]

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20, 1471–1481 (1984).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

Williams, M. R.

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988).
[CrossRef]

Wilson, D. R.

D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
[CrossRef]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Yoon, G.

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

Yuan, D. Y.

D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
[PubMed]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

Zimmerman, G. B.

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
[CrossRef]

Am. Soc. Laser Med. Surg.

G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).

Appl. Opt.

Arch. Pathol.

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489 (1947).

Biochem. Mol. Biol. Int.

G. Pico, “Thermodynamic aspects of the thermal stability of human serum albumin,” Biochem. Mol. Biol. Int. 36, 1017–1023 (1995).
[PubMed]

Biochim. Biophys. Acta

J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987).
[CrossRef] [PubMed]

Biomed. Sci. Instrum.

D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993).
[PubMed]

IEEE J. Quantum Electron.

A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20, 1471–1481 (1984).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Int. J. Thermophys.

J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985).
[CrossRef]

J. Appl. Physiol.

M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[PubMed]

J. Biomed. Opt.

X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981).
[CrossRef]

J. Photochem. Biol.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992).
[CrossRef]

J. Urol.

A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995).
[CrossRef]

Lasers Life Sci.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Surg. Med.

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994).
[CrossRef] [PubMed]

M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996).
[CrossRef] [PubMed]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999).
[CrossRef]

M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef]

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Microsurgery

T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994).
[CrossRef]

Photochem. Photobiol.

S. Thomsen, “Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Surgery (St. Louis)

L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994).
[PubMed]

Undersea Hyperbar Med.

G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).

Other

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988).
[CrossRef]

Becton Dickinson and Company product information sheet 0260031, Becton Dickinson Microbiology Systems, 250 Schilling Circle, Cockeysville, Md. 21030.

Z. F. Gourgouliatos, “Behaviour of optical properties of tissue as a function of temperature,” M.S. thesis (University of Texas at Austin, Austin, Texas, 1986).

R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990).
[CrossRef]

Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.

R. Agah, “Quantitative characterisation of arterial tissue damage,” M.S.E. thesis (University of Texas at Austin, Austin, Texas, 1988).

S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992).
[CrossRef]

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 131–206.
[CrossRef]

S. A. Prahl, “Light distribution in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1988).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995).
[CrossRef]

K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).

E. Chan, “Laser tissue welding: effects of solder coagulation and tissue optical properties,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1997).

T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

J. C. Chato, “Selected thermophysical properties of biological materials,” in Heat Transfer in Medicine and Biology: Analysis and Applications, A. Shitzer, R. C. Eberhart, eds. (Plenum, New York, 1985), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the OCT system.

Fig. 2
Fig. 2

Temperature-dependent group refractive index of albumin protein solders measured with OCT. Measurements were made at room temperature (25 °C) and after the solder specimens had been heated in a constant-temperature water bath for 5 min at temperatures of 60, 70, 80, 90, and 100 °C. Each point represents the mean from measurements made on two specimens. High ICG is 2.5 mg/ml; low ICG is 0.25 mg/ml.

Fig. 3
Fig. 3

Calculated absorption spectra for liquid protein solder containing (a) 2.5 mg/ml ICG, (b) 0.25 mg/ml ICG, and (c) no ICG heated in a constant-temperature water bath at the specified temperatures for 5 min. Control measurements were made on each specimen prior to denaturation. Each curve shows the mean from measurements made on three specimens.

Fig. 4
Fig. 4

Calculated reduced scattering spectra for liquid protein solder containing (a) 2.5 mg/ml ICG, (b) 0.25 mg/ml ICG, and (c) no ICG heated in a constant-temperature water bath at the specified temperatures for 5 min. Control measurements were made on each specimen prior to denaturation. Each curve shows the mean from measurements made on three specimens. Regions of artifact at 800 nm are estimated by line segments.

Fig. 5
Fig. 5

Calculated absorption spectra for solid protein solder containing (a) 2.5 mg/ml ICG, (b) 0.25 mg/ml ICG, and (c) no ICG heated in a constant-temperature water bath at the specified temperatures for 5 min. Control measurements were made on each specimen prior to denaturation. Each curve shows the mean from measurements made on three specimens.

Fig. 6
Fig. 6

Calculated reduced scattering spectra for solid protein solder containing (a) 2.5 mg/ml ICG, (b) 0.25 mg/ml ICG, and (c) no ICG heated in a constant-temperature water bath at the specified temperatures for 5 min. Control measurements were made on each specimen prior to denaturation. Each curve shows the mean from measurements made on three specimens. Regions of artifact at 800 nm are estimated by line segments.

Fig. 7
Fig. 7

Summary of the effect of thermal denaturation on the optical properties of protein solder. Optical properties were measured at room temperature (25 °C) and after the solder specimens had been heated in a constant-temperature water bath for 5 min at temperatures of 60, 70, 80, 90, and 100 °C. Each point represents the mean from measurements made on three specimens. High ICG is 2.5 mg/ml; low ICG is 0.25 mg/ml.

Fig. 8
Fig. 8

Summary of the effect of thermal denaturation on the thermal properties of protein solder. Thermal properties were measured at room temperature (25 °C) and after the solder specimens had been heated in a constant-temperature water bath for 10 min at temperatures of 60, 70, 80, 90, and 100 °C. Each point represents the mean from ten measurements. High ICG is 2.5 mg/ml; low ICG is 0.25 mg/ml.

Fig. 9
Fig. 9

Arrhenius plot for liquid and solid protein solders. Each point shows the mean and standard deviation from measurements made on three specimens each of the liquid and solid protein solders for the 12 temperatures investigated.

Fig. 10
Fig. 10

Absorption coefficient versus ICG concentration of solid protein solders (60% BSA) at 805 nm. Each point represents the mean and standard deviation from measurements made on two specimens.

Tables (3)

Tables Icon

Table 1 Summary of the Temperature-Dependent Optical Properties of the Protein Soldersa

Tables Icon

Table 2 Summary of the Temperature-Dependent Thermal Properties of the Protein Solders

Tables Icon

Table 3 Comparison of Experimental Values of the Optical and Thermal Properties of Albumin Protein Solder Measured with Published Values for Egg White (Albumen) Found in the Literaturea

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ng=Lt.
Pt=A+Bt-1/2,
k=1aΔT/A+b, α=cB/A1+dk2,
Ωz, t=t0t A exp-EaRTdt
Ωt-t0=A exp-ΔEaRTt-t0,
lnτ=-lnA+ΔEaRT.
k=0.5652+0.001575×T Wm-1 °C-1, α=1.339×10-7+0.00473×10-7×T m2 s-1.

Metrics