Abstract

We report the observation of live-cell dynamics by noncontact scanning near-field optical microscopy (SNOM) modified to work with living biological samples that are fully immersed in liquid. We did not use the SNOM setup in strictly near-field conditions (we used 1-µm constant-height mode); however, we could examine the dynamics of rhythmically beating cardiac myocytes in culture with extremely high vertical sensitivity below the nanometric range. We could halt scans at any point to record localized contraction profiles of the cell membrane. We show that the contractions of the organisms changed shape dramatically within adjacent areas. We believe that the spatial dependency of the contractions arises because of the measurement system’s ability to resolve the behavior of individual submembrane actin bundles. Our results, combining imaging and real-time recording in localized areas, reveal a new, to our knowledge, noninvasive method for using SNOM setups for studying the dynamics of live biological samples.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  2. M. Ohtsu, “Photon STM: from imaging to fabrication,” Optoelectron. Devices Technol. 10, 147–166 (1995).
  3. A. Shrier, J. R. Clay, “Pacemaker currents in chick embryonic heart cells change with development,” Nature 283, 670–671 (1980).
    [CrossRef] [PubMed]
  4. S. Mononobe, M. Naya, T. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
    [CrossRef] [PubMed]
  5. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
    [CrossRef]
  6. J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
    [CrossRef] [PubMed]
  7. J. Meunier, M. Bertrand, “Echographic image mean gray level changes with tissue dynamics: a system-based model study,” IEEE Trans. Biomed. Eng. 42, 403–410 (1995).
    [CrossRef] [PubMed]
  8. R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
    [CrossRef]
  9. M. F. Arnsdorf, R. Lal, “Recent progress with atomic force microscopy in biology: molecular resolution imaging of cell membranes, constituent biomolecules, and microcrystals,” in Imaging Technologies and Applications, R. J. Heaston, ed., Proc. SPIE1778, 112–16 (1992).
    [CrossRef]
  10. R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
    [CrossRef]
  11. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
    [CrossRef] [PubMed]
  12. I. Tasaki, T. Nakaye, “Rapid mechanical responses of the dark-adapted squid retina to light pulses,” Science 223, 411–413 (1984).
    [CrossRef] [PubMed]
  13. R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
    [CrossRef] [PubMed]
  14. G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
    [CrossRef] [PubMed]
  15. P. R. Gordon-Weeks, “The Ultrastructure of the neuronal growth cone: new insights from subcellular fractionation and rapid freezing studies,” Electron Microsci. Rev. 1, 201–219 (1988).
    [CrossRef]
  16. P. R. Gordon-Weeks, “Growth cones—the mechanism of neurite advance,” Bioessays 13, 235–239 (1991).
    [CrossRef] [PubMed]
  17. J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).
  18. J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
    [CrossRef] [PubMed]
  19. M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
    [PubMed]

1997 (1)

1996 (3)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
[CrossRef]

1995 (4)

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

J. Meunier, M. Bertrand, “Echographic image mean gray level changes with tissue dynamics: a system-based model study,” IEEE Trans. Biomed. Eng. 42, 403–410 (1995).
[CrossRef] [PubMed]

M. Ohtsu, “Photon STM: from imaging to fabrication,” Optoelectron. Devices Technol. 10, 147–166 (1995).

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

1992 (1)

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

1991 (2)

P. R. Gordon-Weeks, “Growth cones—the mechanism of neurite advance,” Bioessays 13, 235–239 (1991).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1988 (1)

P. R. Gordon-Weeks, “The Ultrastructure of the neuronal growth cone: new insights from subcellular fractionation and rapid freezing studies,” Electron Microsci. Rev. 1, 201–219 (1988).
[CrossRef]

1985 (1)

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

1984 (1)

I. Tasaki, T. Nakaye, “Rapid mechanical responses of the dark-adapted squid retina to light pulses,” Science 223, 411–413 (1984).
[CrossRef] [PubMed]

1982 (1)

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

1980 (1)

A. Shrier, J. R. Clay, “Pacemaker currents in chick embryonic heart cells change with development,” Nature 283, 670–671 (1980).
[CrossRef] [PubMed]

Allen, R. D.

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

Arnsdorf, M. F.

M. F. Arnsdorf, R. Lal, “Recent progress with atomic force microscopy in biology: molecular resolution imaging of cell membranes, constituent biomolecules, and microcrystals,” in Imaging Technologies and Applications, R. J. Heaston, ed., Proc. SPIE1778, 112–16 (1992).
[CrossRef]

Athias, P.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Bertrand, M.

J. Meunier, M. Bertrand, “Echographic image mean gray level changes with tissue dynamics: a system-based model study,” IEEE Trans. Biomed. Eng. 42, 403–410 (1995).
[CrossRef] [PubMed]

Betzig, E.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Bohm, C.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Bonazzola, G. C.

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

Brady, S. T.

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

Clay, J. R.

A. Shrier, J. R. Clay, “Pacemaker currents in chick embryonic heart cells change with development,” Nature 283, 670–671 (1980).
[CrossRef] [PubMed]

Courtois, M.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

DeMarco, A.

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

Edidin, M.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Fantini, E.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Gilbert, S. P.

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

Gordon-Weeks, P. R.

P. R. Gordon-Weeks, “Growth cones—the mechanism of neurite advance,” Bioessays 13, 235–239 (1991).
[CrossRef] [PubMed]

P. R. Gordon-Weeks, “The Ultrastructure of the neuronal growth cone: new insights from subcellular fractionation and rapid freezing studies,” Electron Microsci. Rev. 1, 201–219 (1988).
[CrossRef]

Grynberg, A.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Hall, C. S.

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hwang, J.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Kadono, H.

R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
[CrossRef]

Katayama, Y.

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Kaufmann, M. R.

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

Khatami, S.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Kusano, K.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

Lal, R.

M. F. Arnsdorf, R. Lal, “Recent progress with atomic force microscopy in biology: molecular resolution imaging of cell membranes, constituent biomolecules, and microcrystals,” in Imaging Technologies and Applications, R. J. Heaston, ed., Proc. SPIE1778, 112–16 (1992).
[CrossRef]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
[CrossRef]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Maringelli, M.

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

Metuzals, J.

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

Meunier, J.

J. Meunier, M. Bertrand, “Echographic image mean gray level changes with tissue dynamics: a system-based model study,” IEEE Trans. Biomed. Eng. 42, 403–410 (1995).
[CrossRef] [PubMed]

Mielle, P.

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Miller, J. G.

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

Mononobe, S.

S. Mononobe, M. Naya, T. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Nakaye, T.

I. Tasaki, T. Nakaye, “Rapid mechanical responses of the dark-adapted squid retina to light pulses,” Science 223, 411–413 (1984).
[CrossRef] [PubMed]

Naya, M.

Ohtsu, M.

S. Mononobe, M. Naya, T. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
[CrossRef]

M. Ohtsu, “Photon STM: from imaging to fabrication,” Optoelectron. Devices Technol. 10, 147–166 (1995).

Poo, M. M.

J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).

Ramalingam, T. S.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Rinaudo, S.

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

Rose, J. H.

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

Saiki, T.

S. Mononobe, M. Naya, T. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

Saito, N.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

Shrier, A.

A. Shrier, J. R. Clay, “Pacemaker currents in chick embryonic heart cells change with development,” Nature 283, 670–671 (1980).
[CrossRef] [PubMed]

Tamm, L. K.

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Tasaki, I.

I. Tasaki, T. Nakaye, “Rapid mechanical responses of the dark-adapted squid retina to light pulses,” Science 223, 411–413 (1984).
[CrossRef] [PubMed]

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

Tatsumi, H.

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Trabucco, A.

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wan, J. J.

J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wickline, S. A.

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

Zheng, J. Q.

J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).

Am. J. Physiol. (1)

M. Courtois, S. Khatami, E. Fantini, P. Athias, P. Mielle, A. Grynberg, “Polyunsaturated fatty acids in cultured cardiomyocytes: effect on physiology and b-adrenoceptor function,” Am. J. Physiol. 262, H451–H456 (1992).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, K. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[CrossRef]

Bioessays (1)

P. R. Gordon-Weeks, “Growth cones—the mechanism of neurite advance,” Bioessays 13, 235–239 (1991).
[CrossRef] [PubMed]

Electron Microsci. Rev. (1)

P. R. Gordon-Weeks, “The Ultrastructure of the neuronal growth cone: new insights from subcellular fractionation and rapid freezing studies,” Electron Microsci. Rev. 1, 201–219 (1988).
[CrossRef]

Eur. Biophys. J. (1)

G. C. Bonazzola, A. DeMarco, M. Maringelli, S. Rinaudo, A. Trabucco, “Possible application of the optical tunnel effect to membrane biophysics,” Eur. Biophys. J. 12, 51–55 (1985).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. Meunier, M. Bertrand, “Echographic image mean gray level changes with tissue dynamics: a system-based model study,” IEEE Trans. Biomed. Eng. 42, 403–410 (1995).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

J. H. Rose, M. R. Kaufmann, S. A. Wickline, C. S. Hall, J. G. Miller, “A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue,” J. Acoust. Soc. Am. 97, 656–668 (1995).
[CrossRef] [PubMed]

J. Neurosci. (1)

J. Q. Zheng, J. J. Wan, M. M. Poo, “Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient,” J. Neurosci. 16, 1140–1149 (1994).

Nature (2)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

A. Shrier, J. R. Clay, “Pacemaker currents in chick embryonic heart cells change with development,” Nature 283, 670–671 (1980).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. U. Maheswari, H. Kadono, M. Ohtsu, “Power spectral analysis for evaluating optical near-field images of 20 nm gold particles,” Opt. Commun. 131, 133–142 (1996).
[CrossRef]

Opt. Rev. (1)

R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[CrossRef]

Optoelectron. Devices Technol. (1)

M. Ohtsu, “Photon STM: from imaging to fabrication,” Optoelectron. Devices Technol. 10, 147–166 (1995).

Science (4)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

I. Tasaki, T. Nakaye, “Rapid mechanical responses of the dark-adapted squid retina to light pulses,” Science 223, 411–413 (1984).
[CrossRef] [PubMed]

R. D. Allen, J. Metuzals, I. Tasaki, S. T. Brady, S. P. Gilbert, “Fast axonal transport in squid giant axon,” Science 218, 1127–1129 (1982).
[CrossRef] [PubMed]

J. Hwang, L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Other (1)

M. F. Arnsdorf, R. Lal, “Recent progress with atomic force microscopy in biology: molecular resolution imaging of cell membranes, constituent biomolecules, and microcrystals,” in Imaging Technologies and Applications, R. J. Heaston, ed., Proc. SPIE1778, 112–16 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic view of the core of our homemade system. The metal-coated optical fiber tip is fabricated by chemical etching. A submicrometer aperture is created at its apex to permit highly localized light coupling. The laser light wavelength is 633 nm at 15 mW. To enhance the transmission we do not use total internal reflection. The incident angle is 0°; the spot diameter is 2–3 mm. The light reaching the fiber probe is real transmitted light. Sample–probe separation is not controlled by feedback and it is of the order of 1 µm (see text). Cardiac myocyte cells are prepared on a standard cover glass immersed in a HEPES-buffered Hams F10 culture medium containing 0.5% insulin–transferrin–selenite (ITS), antibiotics, and 3% fetal calf serum (FCS) (feeding medium). The atmosphere surrounding the sample area is maintained at constant temperature and humidity (33 °C and ∼80%) by circulation of warm humid air under the plastic curtain that surrounds the optical system.

Fig. 2
Fig. 2

(a) Scan of 40 µm × 40 µm over live cardiac myocytes; 128 × 128 pixels. (b) Close-up of the region outlined by the rectangle in (a). The image is 8 µm × 15 µm wide; 90 × 90 pixels. The horizontal stripes are due to the beating of the cells during the scanning. White points indicate recording sites where we stopped the scan to monitor the cell activity in real time. (c) Conventional phase-contrast optical microscope picture of the same cell specimen, shown for comparison with the SNOM maps. The area shown is not the same as in (a) and (b).

Fig. 3
Fig. 3

Recordings taken at the two points, P1 and P2, in Fig. 2. Numbers in parentheses are the coordinates (origin at the lower-right-hand corner) of the actual pixel. The distance between the two points is ∼900 nm. Recording time resolution is 0.03 s. Each recording lasted ∼10 s; then scanning was restarted from the same point. The two scans were taken 30 s apart. The two recordings have a common vertical scale to permit comparison between them. The time scales are independent, and the the two images are not synchronized.

Metrics