Abstract

Gold colloids coated with a self-assembled monolayer of an alkanethiol were introduced into a polyethylene matrix by means of solution-casting techniques. We oriented the resulting nanocomposites by uniaxial drawing in the solid state. The absorption spectra of the drawn nanocomposites in the visible wavelength region were found to depend strongly on the polarization direction of incident light. The materials appeared, for instance, red or blue if the light was polarized perpendicular or parallel, respectively, to the drawing axis. The observed optical anisotropy is thought to originate in the morphology of the composites that composed uniaxially oriented, pearl-necklace arrays of nanoparticles with a high aspect ratio, as observed in transmission electron microscopy. It is shown that the polymer-inorganic nanocomposites can be employed as color polarizing filters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Yu. Godovski, “Electron behavior and magnetic properties of polymer nanocomposites,” Adv. Polym. Sci. 119, 81–122 (1995).
  2. L. L. Beecroft, C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
    [CrossRef]
  3. W. Mahler, “Polymer-trapped semiconductor particles,” Inorg. Chem. 27, 435–436 (1988).
    [CrossRef]
  4. I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].
  5. E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
    [CrossRef]
  6. Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and physical properties,” J. Phys. Chem. 95, 525–532 (1991).
    [CrossRef]
  7. S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
    [CrossRef]
  8. M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
    [CrossRef]
  9. L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
    [CrossRef]
  10. T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
    [CrossRef]
  11. T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
    [CrossRef]
  12. F. A. Cotton, G. Wilkinson, “Goldverbindungen,” in Anorganische Chemie (Verlag Chemie, Weinheim, 1974) Chap. 26.I.3, p. 1110.
  13. G. Schmid, A. Lehnert, “Die Komplexierung von Goldkolloiden,” Angew. Chem. 101, 773–774 (1989).
    [CrossRef]
  14. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).
  15. J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
    [CrossRef]
  16. K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
    [CrossRef]
  17. K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
    [CrossRef]
  18. H. Ambronn, “Ueber Pleochroismus pflanzlicher und thierischer Fasern, die mit Silber- und Goldsalzen gefärbt sind,” Kgl. Sächs. Ges. Wiss. 8, 613–628 (1896).
  19. H. Ambronn, R. Zsigmondy, “Ueber Pleochroismus doppelbrechender Gelatine nach Färbung mit Gold- und Silberlösungen,” Ber. Sächs. Ges. Wiss. 51, 13–15 (1899).
  20. S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).
  21. A. Frey-Wyssling, “Röntgenometrische Vermessung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 372–411 (1937).
    [CrossRef]
  22. A. Frey-Wyssling, “Ultramikroskopische Untersuchung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 563–571 (1937).
    [CrossRef]
  23. E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” in Colloid Chemistry, J. Alexander, ed. (Reinhold, New York, 1946), p. 170.
  24. E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am. 41, 957–963 (1951).
    [CrossRef]
  25. Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
    [CrossRef]
  26. J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
    [CrossRef]
  27. S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
    [CrossRef]
  28. R. Zsigmondy, “Eigenschaften, die vom Teilchenabstand abhängen,” in Kolloidchemie, 1. allgemeiner Teil (Otto Spamer, Leipzig, 1925), Chap. 18, p. 43.
  29. U. Kreibig, M. Vollmer, “Quasistatic response of a small metal sphere to an electric field,” in Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Chap. 2.1.2, p. 25.
  30. C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
    [CrossRef]
  31. N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
    [CrossRef]

1999 (1)

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

1998 (2)

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

1997 (3)

L. L. Beecroft, C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
[CrossRef]

1996 (3)

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
[CrossRef]

1995 (1)

D. Yu. Godovski, “Electron behavior and magnetic properties of polymer nanocomposites,” Adv. Polym. Sci. 119, 81–122 (1995).

1994 (3)

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
[CrossRef]

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

1992 (3)

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].

1991 (2)

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and physical properties,” J. Phys. Chem. 95, 525–532 (1991).
[CrossRef]

1989 (2)

E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
[CrossRef]

G. Schmid, A. Lehnert, “Die Komplexierung von Goldkolloiden,” Angew. Chem. 101, 773–774 (1989).
[CrossRef]

1988 (1)

W. Mahler, “Polymer-trapped semiconductor particles,” Inorg. Chem. 27, 435–436 (1988).
[CrossRef]

1951 (1)

1937 (2)

A. Frey-Wyssling, “Röntgenometrische Vermessung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 372–411 (1937).
[CrossRef]

A. Frey-Wyssling, “Ultramikroskopische Untersuchung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 563–571 (1937).
[CrossRef]

1926 (1)

S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).

1899 (1)

H. Ambronn, R. Zsigmondy, “Ueber Pleochroismus doppelbrechender Gelatine nach Färbung mit Gold- und Silberlösungen,” Ber. Sächs. Ges. Wiss. 51, 13–15 (1899).

1896 (1)

H. Ambronn, “Ueber Pleochroismus pflanzlicher und thierischer Fasern, die mit Silber- und Goldsalzen gefärbt sind,” Kgl. Sächs. Ges. Wiss. 8, 613–628 (1896).

Akimov, I. A.

I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].

Al-Rawashdeh, N. A. F.

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

Ambronn, H.

H. Ambronn, R. Zsigmondy, “Ueber Pleochroismus doppelbrechender Gelatine nach Färbung mit Gold- und Silberlösungen,” Ber. Sächs. Ges. Wiss. 51, 13–15 (1899).

H. Ambronn, “Ueber Pleochroismus pflanzlicher und thierischer Fasern, die mit Silber- und Goldsalzen gefärbt sind,” Kgl. Sächs. Ges. Wiss. 8, 613–628 (1896).

Aranda, F.

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Asami, M.

E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
[CrossRef]

Bastiaansen, C.

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Beecroft, L. L.

L. L. Beecroft, C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Berkman, S.

S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

Böhm, J.

S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

Carlson, G.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Caseri, W.

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
[CrossRef]

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

Chen, X.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

Cotton, F. A.

F. A. Cotton, G. Wilkinson, “Goldverbindungen,” in Anorganische Chemie (Verlag Chemie, Weinheim, 1974) Chap. 26.I.3, p. 1110.

Denisyuk, I. Yu.

I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].

Dirix, Y.

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Foss, C. A.

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

Frey-Wyssling, A.

A. Frey-Wyssling, “Röntgenometrische Vermessung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 372–411 (1937).
[CrossRef]

A. Frey-Wyssling, “Ultramikroskopische Untersuchung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 563–571 (1937).
[CrossRef]

Gayen, S. K.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

Godovski, D. Yu.

D. Yu. Godovski, “Electron behavior and magnetic properties of polymer nanocomposites,” Adv. Polym. Sci. 119, 81–122 (1995).

Gonsalves, K. E.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Hayashi, Y.

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Heath, J. R.

J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
[CrossRef]

Herron, N.

Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and physical properties,” J. Phys. Chem. 95, 525–532 (1991).
[CrossRef]

Hornyak, G. L.

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

Jose-Yacaman, M.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Kiess, H.

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

Klok, H.-A.

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

Knobler, C. M.

J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
[CrossRef]

Kobayashi, N.

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Kreibig, U.

U. Kreibig, M. Vollmer, “Quasistatic response of a small metal sphere to an electric field,” in Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Chap. 2.1.2, p. 25.

Kumar, J.

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Kyprianidou-Leodidou, T.

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
[CrossRef]

Land, E. H.

E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am. 41, 957–963 (1951).
[CrossRef]

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” in Colloid Chemistry, J. Alexander, ed. (Reinhold, New York, 1946), p. 170.

Leff, D. V.

J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
[CrossRef]

Lehnert, A.

G. Schmid, A. Lehnert, “Die Komplexierung von Goldkolloiden,” Angew. Chem. 101, 773–774 (1989).
[CrossRef]

Mackenzie, J. D.

E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
[CrossRef]

Mahler, W.

W. Mahler, “Polymer-trapped semiconductor particles,” Inorg. Chem. 27, 435–436 (1988).
[CrossRef]

Margraf, P.

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

Martin, C. R.

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

Meshkov, A. M.

I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].

Möller, M.

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
[CrossRef]

Nakamura, A.

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Ober, C. K.

L. L. Beecroft, C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Ogawa, S.

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Perez, R.

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

Pope, E. J. A.

E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
[CrossRef]

Roescher, A.

J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
[CrossRef]

Sandrock, M. L.

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

Schmid, G.

G. Schmid, A. Lehnert, “Die Komplexierung von Goldkolloiden,” Angew. Chem. 101, 773–774 (1989).
[CrossRef]

Selvan, S. T.

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

Seugling, C. J.

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

Smith, P.

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

Spatz, J. P.

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
[CrossRef]

Stockert, J. A.

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

Suter, U. W.

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
[CrossRef]

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

Tokizaki, T.

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Vollmer, M.

U. Kreibig, M. Vollmer, “Quasistatic response of a small metal sphere to an electric field,” in Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Chap. 2.1.2, p. 25.

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

Walther, P.

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

Wang, Y.

Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and physical properties,” J. Phys. Chem. 95, 525–532 (1991).
[CrossRef]

Wehrli, E.

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

Weibel, M.

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

West, C. D.

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” in Colloid Chemistry, J. Alexander, ed. (Reinhold, New York, 1946), p. 170.

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

Wilkinson, G.

F. A. Cotton, G. Wilkinson, “Goldverbindungen,” in Anorganische Chemie (Verlag Chemie, Weinheim, 1974) Chap. 26.I.3, p. 1110.

Zimmermann, L.

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

Zocher, H.

S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).

Zsigmondy, R.

H. Ambronn, R. Zsigmondy, “Ueber Pleochroismus doppelbrechender Gelatine nach Färbung mit Gold- und Silberlösungen,” Ber. Sächs. Ges. Wiss. 51, 13–15 (1899).

R. Zsigmondy, “Eigenschaften, die vom Teilchenabstand abhängen,” in Kolloidchemie, 1. allgemeiner Teil (Otto Spamer, Leipzig, 1925), Chap. 18, p. 43.

ACS Symp. Ser. (1)

K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda, M. Jose-Yacaman, “Polymer composites of nanostructured gold and their third-order nonlinear optical properties,” ACS Symp. Ser. 622, 151–161 (1996).
[CrossRef]

Adv. Mater. (3)

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999).
[CrossRef]

J. P. Spatz, A. Roescher, M. Möller, “Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films,” Adv. Mater. 8, 337–340 (1996).
[CrossRef]

S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Adv. Mater. 10, 132–134 (1998).
[CrossRef]

Adv. Polym. Sci. (1)

D. Yu. Godovski, “Electron behavior and magnetic properties of polymer nanocomposites,” Adv. Polym. Sci. 119, 81–122 (1995).

Angew. Chem. (1)

G. Schmid, A. Lehnert, “Die Komplexierung von Goldkolloiden,” Angew. Chem. 101, 773–774 (1989).
[CrossRef]

Ber. Sächs. Ges. Wiss. (1)

H. Ambronn, R. Zsigmondy, “Ueber Pleochroismus doppelbrechender Gelatine nach Färbung mit Gold- und Silberlösungen,” Ber. Sächs. Ges. Wiss. 51, 13–15 (1899).

Chem. Mater. (1)

L. L. Beecroft, C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Inorg. Chem. (1)

W. Mahler, “Polymer-trapped semiconductor particles,” Inorg. Chem. 27, 435–436 (1988).
[CrossRef]

J. Chem. Soc., Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun.801–802 (1994).

J. Mater. Res. (1)

E. J. A. Pope, M. Asami, J. D. Mackenzie, “Transparent silica gel-PMMA composites,” J. Mater. Res. 4, 1018–1026 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (2)

Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and physical properties,” J. Phys. Chem. 95, 525–532 (1991).
[CrossRef]

T. Kyprianidou-Leodidou, W. Caseri, U. W. Suter, “Size variation of PbS particles in high-refractive-index nanocomposites,” J. Phys. Chem. 98, 8992–8997 (1994).
[CrossRef]

J. Phys. Chem. B (1)

J. R. Heath, C. M. Knobler, D. V. Leff, “Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant,” J. Phys. Chem. B 101, 189–197 (1997).
[CrossRef]

J. Phys. Chem. B. (1)

N. A. F. Al-Rawashdeh, M. L. Sandrock, C. J. Seugling, C. A. Foss, “Visible region polarization spectroscopic studies of template-synthesized gold nanoparticles oriented in polyethylene,” J. Phys. Chem. B. 102, 361–371 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, “Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities,” Jpn. J. Appl. Phys. 33, L331–L333 (1994).
[CrossRef]

Kgl. Sächs. Ges. Wiss. (1)

H. Ambronn, “Ueber Pleochroismus pflanzlicher und thierischer Fasern, die mit Silber- und Goldsalzen gefärbt sind,” Kgl. Sächs. Ges. Wiss. 8, 613–628 (1896).

Mater. Res. Soc. Symp. Proc. (1)

C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, “Template synthesis and optical properties of small metal particle composite materials: effects of particle shape and orientation on plasmon resonance maxima,” Mater. Res. Soc. Symp. Proc. 286, 431–436 (1992).
[CrossRef]

Nanostruct. Mater. (1)

K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez, M. Jose-Yacaman, “Synthesis and nonlinear optical characterization of nanostructured gold/polymer composites and suspensions,” Nanostruct. Mater. 7, 293–303 (1996).
[CrossRef]

Opt. Spektrosk. (1)

I. A. Akimov, I. Yu. Denisyuk, A. M. Meshkov, “Semiconductor nanocrystals in a polymeric matrix: new optical media,” Opt. Spektrosk. 72, 1026 (1992) [I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spectrosc. 72, 558–562 (1992)].

Polym. Adv. Technol. (3)

M. Weibel, W. Caseri, U. W. Suter, H. Kiess, E. Wehrli, “Preparation of polymer nanocomposites with ultrahigh refractive index,” Polym. Adv. Technol. 2, 75–80 (1991).
[CrossRef]

L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter, P. Walther, “Polymer nanocomposites with ultralow refractive index,” Polym. Adv. Technol. 4, 1–7 (1992).
[CrossRef]

T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter, P. Walther, “Polymer sheets with a thin nanocomposite layer acting as a UV filter,” Polym. Adv. Technol. 8, 505–512 (1997).
[CrossRef]

Protoplasma (2)

A. Frey-Wyssling, “Röntgenometrische Vermessung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 372–411 (1937).
[CrossRef]

A. Frey-Wyssling, “Ultramikroskopische Untersuchung der submikroskopischen Räume in Gerüstsubstanzen,” Protoplasma 27, 563–571 (1937).
[CrossRef]

Z. Phys. Chem. (1)

S. Berkman, J. Böhm, H. Zocher, “Anisotropes Kupfer, Silber und Gold,” Z. Phys. Chem. 124, 83–96 (1926).

Other (4)

E. H. Land, C. D. West, “Dichroism and dichroic polarizers,” in Colloid Chemistry, J. Alexander, ed. (Reinhold, New York, 1946), p. 170.

R. Zsigmondy, “Eigenschaften, die vom Teilchenabstand abhängen,” in Kolloidchemie, 1. allgemeiner Teil (Otto Spamer, Leipzig, 1925), Chap. 18, p. 43.

U. Kreibig, M. Vollmer, “Quasistatic response of a small metal sphere to an electric field,” in Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Chap. 2.1.2, p. 25.

F. A. Cotton, G. Wilkinson, “Goldverbindungen,” in Anorganische Chemie (Verlag Chemie, Weinheim, 1974) Chap. 26.I.3, p. 1110.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM of dodecanenethiol-coated gold nanoparticles.

Fig. 2
Fig. 2

(a) Thermogravimetric analysis and (b) differential scanning thermogram of dodecanenethiol-coated gold nanoparticles.

Fig. 3
Fig. 3

TEM micrographs of a polyethylene-gold (4% w/w) sample taken from a xylene mixture after heating at 130 °C (a) for 10 min and (b) for 5 h. (c) Undrawn (isotropic) polyethylene-gold nanocomposite after 5 h annealing and melt processing and (d) drawn (to a ratio of 15, the draw direction is horizontal).

Fig. 4
Fig. 4

Absorption spectra of a polyethylene-gold nanocomposite (4% w/w gold, draw ratio = 15) in linearly polarized light with neat, drawn polyethylene of the same thickness in the reference beam. The angle φ between the polarization direction of the light and the drawing direction of the films varies between 0° and 90° in steps of 10°.

Fig. 5
Fig. 5

Optical micrographs of drawn polyethylene-gold nanocomposites (4% w/w gold, draw ratio = 15); polarization direction (a) parallel and (b) perpendicular to the drawing direction.

Fig. 6
Fig. 6

Wavelength of the absorption maximum as a function of the draw ratio of a polyethylene-gold film (4% w/w gold): ●, parallel polarized light and ○, perpendicularly polarized light.

Fig. 7
Fig. 7

(a) Schematic representation of an LCD with an oriented polyethylene-gold nanocomposite acting as a CPF: 1, incoming, unpolarized light; 2, polarizer; 3, glass plate coated with an electrode layer (e.g., indium tin oxide) and an orientation layer; 4, nematic liquid-crystalline molecules that form a 90° helical twist (off state) or align parallel to the electrical field (on state); 5, CPF. (b) Actual twisted nematic LCD equipped with a polyethylene–gold CPF (on state, left side: CPF perpendicular to the polarizer; right side: CPF parallel to the polarizer).

Metrics