Abstract

We theoretically analyze the relation between the pulse width of light launched into an optical fiber and the resultant power spectrum of spontaneous Brillouin backscattered light. Through this analysis, we determine numerically that the bandwidth of the Brillouin backscattered light becomes wider, and thus the measurement accuracy in determining the peak-power frequency degrades in approximately inverse proportion to the launched pulse width. Experimental results with various pulse widths are in good agreement with the derived theoretical results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
    [CrossRef]
  2. Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
    [CrossRef]
  3. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
    [CrossRef]
  4. M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
    [CrossRef]
  5. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  6. T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
    [CrossRef]
  7. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
    [CrossRef]
  8. C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.
  9. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
    [CrossRef]
  10. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
    [CrossRef] [PubMed]
  11. D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
    [CrossRef]
  12. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  13. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [CrossRef]
  14. P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
    [CrossRef]
  15. M. K. Baronski, S. M. Jenser, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15, 2112–2115 (1976).
    [CrossRef]
  16. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).
  17. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.
  18. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).
  19. J. Dhliwayo, D. J. Webb, “Temperature error analysis for a distributed temperature sensor based on stimulated Brillouin scattering,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 554–557.

1997 (7)

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

1996 (2)

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

1994 (1)

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

1991 (1)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

1989 (1)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

1976 (1)

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Bao, X.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Baronski, M. K.

Bennion, I.

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Dakin, J. P.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.

J. Dhliwayo, D. J. Webb, “Temperature error analysis for a distributed temperature sensor based on stimulated Brillouin scattering,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 554–557.

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Fallon, R. W.

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

Fellay, A.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Gaubicher, S.

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

Gloag, A.

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Gogolla, T.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Graus, D.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Horiguchi, T.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Jackson, D. A.

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Jenser, S. M.

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Koyamada, Y.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

Krebber, K.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Kurashima, T.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Newson, T. P.

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Pannell, C. N.

C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Rao, Y.

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

Reekie, L.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Robert, P. A.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997).
[CrossRef] [PubMed]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Schliep, F.

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Sommer, J. M.

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

Tateda, M.

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Wait, P. C.

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

Webb, D. J.

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.

J. Dhliwayo, D. J. Webb, “Temperature error analysis for a distributed temperature sensor based on stimulated Brillouin scattering,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 554–557.

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Xu, M. G.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Zhang, L.

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996).
[CrossRef]

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

IEICE Jpn. (1)

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).

J. Lightwave Technol. (4)

D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Opt. Lett. (1)

Other (3)

C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.

J. Dhliwayo, D. J. Webb, “Temperature error analysis for a distributed temperature sensor based on stimulated Brillouin scattering,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 554–557.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic configuration of the system for measuring strain and temperature.

Fig. 2
Fig. 2

Relation between the power spectra of the launched, pulsed light and the Brillouin backscattered light.

Fig. 3
Fig. 3

Power spectra for various input pulse widths τ of the Brillouin backscattered light.

Fig. 4
Fig. 4

Relation between the pulse width τ and the peak power of the Brillouin backscattered light.

Fig. 5
Fig. 5

Relation between the pulse width τ and the FWHM of the Brillouin backscattered light. The filled circles represent the experimental results.

Fig. 6
Fig. 6

Relation between the peak-power frequency-measurement error Δα and the pulse width τ.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

PBz, ν=gν, νBc2nP exp-2αzz,
gν, νB=hw/22ν-νB2+w/22,
h=πn7p122cλ2ρvw/2,
z=ct/2n,
Ept=E0 expi2πf0t-τ/2tτ/20t<-τ/2, t>τ/2,
Ppf, f0=P0sin πf-f0τπf-f02,
Hν= gν, νBPpf, f0df.
dHνdν=Ppf, f0dfgν, f-sBdν.
Hν=-sin πf-fτπf-f02hw/22ν-f-sB2+w/22df,
Hα=τhα2+11+α2-1-exp-Aα2-1cos Aα+2α sin AαAα2+1,
α=ν-νBw/2,
A=πτw.
α2-1-exp-Aα2-1cos Aα + 2α sin AαAα2+10
Haα=τhAA-1+exp-A-2A-3+exp-AA2+4A+62 α2.
HS-HN=HS1-A-3+exp-AA2+4A+6/2A-1+exp-AΔα2.
Δα=A-1+exp-AA-3+exp-AA2+4A+6/21/2SNR1/4.
Δα=A-1A-31/2SNR1/4,
Δα12ASNR1/4.

Metrics