Abstract

We present a simple, cost-effective method for creating diffractive optical elements on the surfaces of optical fibers and fiber-optic components by use of 193-nm ablation techniques. It is an outgrowth of a more fundamental investigation of the effects of intense UV radiation fields on SiO2- and Ge–SiO2-based structures (specifically optical fibers and preforms) and allows the inexpensive fabrication of structures such as the suggested evanescent-field-based sensing device.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Houde-Walter, “Recent progress in gradient-index optics,” in Gradient-Index Optics and Miniature Optics, J. D. Rees, D. C. Leiner, eds., Proc. SPIE935, 2–26 (1988).
    [CrossRef]
  2. D. B. Keck, “GRIN V: progress in gradient-index imaging,” Appl. Opt. 24, 4287 (1985).
    [CrossRef]
  3. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035–1038 (1980).
    [CrossRef] [PubMed]
  4. Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
    [CrossRef]
  5. A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
    [CrossRef]
  6. J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
    [CrossRef]
  7. D. R. Lyons, (LLNL, Livermore, Calif.1986–1990).

1994 (1)

A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
[CrossRef]

1986 (1)

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

1985 (1)

1982 (1)

Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
[CrossRef]

1980 (1)

Baral, S. K.

A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

Eapen, B. J.

A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
[CrossRef]

Eichner, L.

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

Houde-Walter, S.

S. Houde-Walter, “Recent progress in gradient-index optics,” in Gradient-Index Optics and Miniature Optics, J. D. Rees, D. C. Leiner, eds., Proc. SPIE935, 2–26 (1988).
[CrossRef]

Howard, R. E.

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

Kawamura, Y.

Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
[CrossRef]

Keck, D. B.

Lyons, D. R.

D. R. Lyons, (LLNL, Livermore, Calif.1986–1990).

Moore, D. T.

Mukherjee, A.

A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
[CrossRef]

Namba, S.

Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
[CrossRef]

Toyoda, K.

Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
[CrossRef]

White, J. C.

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Kawamura, K. Toyoda, S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374–375 (1982).
[CrossRef]

A. Mukherjee, B. J. Eapen, S. K. Baral, “Very low loss channel waveguides in polymethylmethacrylate,” Appl. Phys. Lett. 65, 3179–3181 (1994).
[CrossRef]

J. Appl. Phys. (1)

J. E. Bjorkholm, L. Eichner, J. C. White, R. E. Howard, “Direct writing in self-developing resists using low-power cw ultraviolet light,” J. Appl. Phys. 58, 2098–2100 (1986).
[CrossRef]

Other (2)

D. R. Lyons, (LLNL, Livermore, Calif.1986–1990).

S. Houde-Walter, “Recent progress in gradient-index optics,” in Gradient-Index Optics and Miniature Optics, J. D. Rees, D. C. Leiner, eds., Proc. SPIE935, 2–26 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for GRIN rod ablation.

Fig. 2
Fig. 2

Zeroth- and first-order diffracted laser beams exiting GRIN along with their photographic images.

Fig. 3
Fig. 3

AFM scan near the center of the unablated GRIN rod.

Fig. 4
Fig. 4

AFM scan near the center of the ablated GRIN rod before cleaning.

Fig. 5
Fig. 5

AFM scan near the center of the ablated side of the GRIN rod after cleaning.

Fig. 6
Fig. 6

Magnified three-dimensional image illustrating some of the details of the level of surface roughness associated with the ablation process.

Fig. 7
Fig. 7

Actual cross-sectional pattern of ablated lens overlaid with corresponding trapezoidal grating structure showing the paths examined to describe the observed diffraction pattern approximately.

Fig. 8
Fig. 8

Evanescent-field-based hydrodynamic sensor with an ablated grating pattern on a D-fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ψϕ=pathspath limits AϕexpikΔly, ϕdy

Metrics