Abstract

Trace concentrations of energetic materials such as 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1,3,5-trinitro-s-triazine (RDX) are detected by laser photofragmentation–fragment detection (PF–FD) spectrometry. In this technique, a single laser operating near 227 nm photofragments the parent molecule and facilitates the detection of the characteristic NO fragment by means of its A 2Σ+X 2Π (0, 0) transitions near 227 nm. Fragment detection is accomplished by resonance-enhanced multiphoton ionization with miniature electrodes and by laser-induced fluorescence (LIF) with a photodetector. Experiments are also conducted in the visible region by use of 453.85-nm radiation for photofragmentation and fragment detection. Sand samples contaminated with PETN and RDX are analyzed by a pyrolysis–LIF technique, which involves pyrolysis of the energetic material with subsequent detection of the pyrolysis products NO and NO2 by LIF and PF–LIF, respectively, near 227 nm. The application of these techniques to the trace analysis of TNT, PETN, and RDX at ambient pressure in room air is demonstrated with limits of detection (signal-to-noise ratio, 3) in the low parts-in-109 to parts-in-106 range for a 20-s integration time and 10–120 µJ of laser energy at 226.8 nm and ∼5 mJ at 453.85 nm. An increase in detection sensitivity is projected with an increase in laser energy and an improved system design. The analytical merits of these techniques are discussed and compared with those of other laser-based techniques.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas-phase,” Trends Anal. Chem. 17, 542–550 (1998), and references therein.
  2. J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998), and references therein.
    [CrossRef]
  3. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
    [CrossRef]
  4. S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
    [CrossRef]
  5. H. Riris, C. B. Carlisle, D. F. McMillen, D. E. Cooper, “Explosives detection with a frequency modulation spectrometer,” Appl. Opt. 35, 4694–4704 (1996).
    [CrossRef] [PubMed]
  6. C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
    [CrossRef]
  7. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
    [CrossRef]
  8. A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
    [CrossRef]
  9. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
    [CrossRef]
  10. D. Wu, J. Singh, F. Yueh, D. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation/laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  11. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
    [CrossRef]
  12. W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
    [CrossRef]
  13. B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
    [CrossRef]
  14. G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
    [CrossRef]
  15. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
    [CrossRef]
  16. J. B. Simeonsson, R. C. Sausa, “Trace Analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectrosc. 50, 1277–1282 (1996).
    [CrossRef]
  17. J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
    [CrossRef]
  18. A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
    [CrossRef]
  19. R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240–251 (1971).
    [CrossRef]
  20. N. E. Ermolin, V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines,” Combust. Explos. Shock Waves 33, 251–269 (1997), and references therein.
    [CrossRef]
  21. R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 3. Temperal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8877–8891 (1992).
    [CrossRef]
  22. R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8891–8897 (1992).
    [CrossRef]
  23. Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 3. A high-rate in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rates as variables,” Combust. Flame 62, 213–224 (1985).
    [CrossRef]
  24. Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 4. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures,” Combust. Flame 66, 9–16 (1986).
    [CrossRef]
  25. W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
    [CrossRef]

1999

1998

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas-phase,” Trends Anal. Chem. 17, 542–550 (1998), and references therein.

J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998), and references therein.
[CrossRef]

1997

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

N. E. Ermolin, V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines,” Combust. Explos. Shock Waves 33, 251–269 (1997), and references therein.
[CrossRef]

1996

1994

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
[CrossRef]

1993

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

1992

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 3. Temperal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8877–8891 (1992).
[CrossRef]

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8891–8897 (1992).
[CrossRef]

1989

C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
[CrossRef]

1987

S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
[CrossRef]

1986

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 4. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures,” Combust. Flame 66, 9–16 (1986).
[CrossRef]

1985

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 3. A high-rate in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rates as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

1982

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

1978

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

1976

W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
[CrossRef]

1971

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240–251 (1971).
[CrossRef]

Achter, E. K.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Behrens, R.

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 3. Temperal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8877–8891 (1992).
[CrossRef]

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8891–8897 (1992).
[CrossRef]

Boudreaux, G. M.

Brill, T.

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 4. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures,” Combust. Flame 66, 9–16 (1986).
[CrossRef]

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 3. A high-rate in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rates as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

Bulusu, S.

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8891–8897 (1992).
[CrossRef]

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 3. Temperal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8877–8891 (1992).
[CrossRef]

Capellos, C.

C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
[CrossRef]

Cardinet, Ph.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

Carlisle, C. B.

Cespedes, E. R.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

Clark, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Cooper, D. E.

Davis, W. M.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

Dionne, B. C.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Eiceman, G. A.

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Engleman, R.

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240–251 (1971).
[CrossRef]

Ermolin, N. E.

N. E. Ermolin, V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines,” Combust. Explos. Shock Waves 33, 251–269 (1997), and references therein.
[CrossRef]

Field, J. E.

W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
[CrossRef]

Fine, D. H.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Goodson, R. A.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

Hauser, H. M.

W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
[CrossRef]

Henry, A.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

Hobbs, J. R.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Huang, S. D.

S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
[CrossRef]

Kolaitis, L.

S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
[CrossRef]

Kotlar, A. J.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
[CrossRef]

Kunefke, A. J.

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Le Moal, M. F.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

Ledingham, K. W. D.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Lee, L. T.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

Lemire, G. W.

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

Liang, Y.

C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
[CrossRef]

Lubman, D. M.

S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
[CrossRef]

Marshall, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

McMillen, D. F.

Miller, T. S.

Monts, D.

Ng, W. L.

W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
[CrossRef]

Oyumi, Y.

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 4. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures,” Combust. Flame 66, 9–16 (1986).
[CrossRef]

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 3. A high-rate in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rates as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

Papagiannakopoulos, P.

C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
[CrossRef]

Parmeter, J. E.

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Powell, J. F.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

Preston, D.

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Riris, H.

Rodriguez, J.

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Rounbehler, D. P.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

Rouse, P. E.

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240–251 (1971).
[CrossRef]

Sander, J.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas-phase,” Trends Anal. Chem. 17, 542–550 (1998), and references therein.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “Trace Analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectrosc. 50, 1277–1282 (1996).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas-phase,” Trends Anal. Chem. 17, 542–550 (1998), and references therein.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “Trace Analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectrosc. 50, 1277–1282 (1996).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

Singh, J.

Singh, J. P.

Singhal, R. P.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Steinfeld, J. I.

J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998), and references therein.
[CrossRef]

Teague, M. W.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
[CrossRef]

Tiano, G.

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Valentin, A.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

Vanderhoff, J. A.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
[CrossRef]

Wormhoudt, J.

J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998), and references therein.
[CrossRef]

Wu, D.

Yueh, F.

Zarko, V. E.

N. E. Ermolin, V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines,” Combust. Explos. Shock Waves 33, 251–269 (1997), and references therein.
[CrossRef]

Anal. Chem.

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1994).
[CrossRef]

Analyst

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Annu. Rev. Phys. Chem.

J. I. Steinfeld, J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annu. Rev. Phys. Chem. 49, 203–232 (1998), and references therein.
[CrossRef]

Appl. Opt.

Appl. Spectros.

S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosives using laser desorption/mass spectrometry,” Appl. Spectros. 41, 1371–1376 (1987).
[CrossRef]

Appl. Spectrosc.

Appl. Spectrosc. Rev.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

Chem. Phys. Lett.

C. Capellos, P. Papagiannakopoulos, Y. Liang, “The 248-nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533–538 (1989).
[CrossRef]

Combust. Explos. Shock Waves

N. E. Ermolin, V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines,” Combust. Explos. Shock Waves 33, 251–269 (1997), and references therein.
[CrossRef]

Combust. Flame

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 3. A high-rate in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rates as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

Y. Oyumi, T. Brill, “Thermal decomposition of energetic materials. 4. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures,” Combust. Flame 66, 9–16 (1986).
[CrossRef]

Environ. Geol.

W. M. Davis, E. R. Cespedes, L. T. Lee, J. F. Powell, R. A. Goodson, “Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system,” Environ. Geol. 29, 228–237 (1997).
[CrossRef]

J. Chem. Soc. Perkin Trans. 2

W. L. Ng, J. E. Field, H. M. Hauser, “Study of thermal decomposition of pentaerythritol tetranitrate,” J. Chem. Soc. Perkin Trans. 2 6, 637–639 (1976).
[CrossRef]

J. Energetic Mater.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986).
[CrossRef]

J. Mol. Spectrosc.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone Bands of 14N16O and determination of molecular constants,” J. Mol. Spectrosc. 70, 18–26 (1978).
[CrossRef]

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectrosc. 37, 240–251 (1971).
[CrossRef]

J. Phys. Chem.

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 3. Temperal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8877–8891 (1992).
[CrossRef]

R. Behrens, S. Bulusu, “Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine,” J. Phys. Chem. 96, 8891–8897 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Talanta

G. A. Eiceman, D. Preston, G. Tiano, J. Rodriguez, J. E. Parmeter, “Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry,” Talanta 45, 57–74 (1997).
[CrossRef]

Trends Anal. Chem.

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas-phase,” Trends Anal. Chem. 17, 542–550 (1998), and references therein.

Other

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental apparatus: SHG, second-harmonic generator; PC, computer; PMT, photomultiplier tube; DIG., digital.

Fig. 2
Fig. 2

NO spectra: (a) computer simulation, (b) Pyrolysis–LIF of PETN, (c) PF–REMPI of PETN.

Fig. 3
Fig. 3

PF–REMPI response plots of PETN with (a) ∼100 uJ of 227-nm and (b) ∼5 mJ of 454-nm laser radiation.

Fig. 4
Fig. 4

227-nm LIF emission spectra of 0.1% NO in N2 at room temperature and NO from PETN.

Fig. 5
Fig. 5

Intensity-versus-time plot of NO from 20 ppm of PETN in sand.

Fig. 6
Fig. 6

Pyrolysis–LIF response curves of NO from RDX (filled circles) and PETN (open circles).

Fig. 7
Fig. 7

Two-photon LIF excitation spectrum of NO from (a) PETN and (b) 0.1% NO in N2.

Tables (1)

Tables Icon

Table 1 LOD’s of PETN, RDX, and TNTa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

log PPETN ppt=-7243/TK+25.56,
log PRDX ppt=-6473/TK+22.50,
log PTNT ppb=-5481/TK+19.37,
R-NO22hν1 R+NOX2Π+O,
NOX2Πhν2 NOA2Σ+hν2 NO+X1Σ++e,

Metrics