Abstract

Several mechanisms for the excitation of capillary waves and for the development of the average deformation of a liquid surface under the action of a modulated laser beam are considered. The amplitude of the capillary wave in a strongly absorbing solution of the dye LDS 751 in ethylene glycol is experimentally studied as a function of laser intensity. Consecutive changes in the predominant mechanism of the excitation with increasing laser intensity are observed and described. At low laser intensities the mechanism connected with the creation of a surface tension gradient prevails. This mechanism becomes nonlinear with increasing influence of the convective motion. In addition, pressure pulsations of the convective flow start to contribute significantly to the generation process. The resonances of capillary waves in a cylindrical container are also investigated and used for determining the surface tension and viscosity of the liquid.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Al. A. Kolomenskii, “Excitation of surface waves by volume sources in a compressible liquid,” Sov. Tech. Phys. Lett. 12, 100–101 (1986).
  2. J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
    [CrossRef]
  3. A. Hajiloo, “Analysis of laser-induced capillary waves,” J. Colloid Interface Sci. 116, 59–69 (1987).
    [CrossRef]
  4. Al. A. Kolomenskii, “Perturbations of the surface of a liquid interacting with modulated optical radiation,” Sov. J. Quantum Electron. 19, 365–368 (1989).
    [CrossRef]
  5. B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).
  6. S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
    [CrossRef]
  7. L. B. Shih, “Surface fluctuation spectroscopy: a novel technique for characterizing liquid interfaces,” Rev. Sci. Instrum. 55, 716–726 (1984).
    [CrossRef]
  8. A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).
  9. K. Miyano, “Local mechanical properties of monomolecular films on water measured with a capillary wave probe,” Langmuir 6, 1254–1259 (1990).
    [CrossRef]
  10. J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
    [CrossRef]
  11. H. Helmers, W. Witte, “Holographic study of laser-induced liquid surface deformations,” Opt. Commun. 49, 21–23 (1984).
    [CrossRef]
  12. Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
    [CrossRef]
  13. L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), p. 237.
  14. H. H. Bau, L. A. Bertram, S. A. Korpela, eds., Bifurcation Phenomena and Chaos in Thermal Convection (American Society of Mechanical Engineers, New York, 1992).
  15. Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).
  16. L. M. Lyamshev, K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust. 27, 357–371 (1981).
  17. E. L. Koschmiedier, Benard Cells and Taylor Vortices (Cambridge U. Press, Cambridge, 1993).

1995

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

1990

K. Miyano, “Local mechanical properties of monomolecular films on water measured with a capillary wave probe,” Langmuir 6, 1254–1259 (1990).
[CrossRef]

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).

S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
[CrossRef]

1989

Al. A. Kolomenskii, “Perturbations of the surface of a liquid interacting with modulated optical radiation,” Sov. J. Quantum Electron. 19, 365–368 (1989).
[CrossRef]

1987

A. Hajiloo, “Analysis of laser-induced capillary waves,” J. Colloid Interface Sci. 116, 59–69 (1987).
[CrossRef]

1986

Al. A. Kolomenskii, “Excitation of surface waves by volume sources in a compressible liquid,” Sov. Tech. Phys. Lett. 12, 100–101 (1986).

J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
[CrossRef]

1985

Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).

1984

H. Helmers, W. Witte, “Holographic study of laser-induced liquid surface deformations,” Opt. Commun. 49, 21–23 (1984).
[CrossRef]

L. B. Shih, “Surface fluctuation spectroscopy: a novel technique for characterizing liquid interfaces,” Rev. Sci. Instrum. 55, 716–726 (1984).
[CrossRef]

1982

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

1981

L. M. Lyamshev, K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust. 27, 357–371 (1981).

1978

A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).

Bozhkov, A. I.

A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).

Bunkin, F. V.

A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).

Calatroni, J.

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

Da Costa, G.

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

Egerev, S. V.

S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
[CrossRef]

Grigorova, B. M.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).

Hajiloo, A.

A. Hajiloo, “Analysis of laser-induced capillary waves,” J. Colloid Interface Sci. 116, 59–69 (1987).
[CrossRef]

Hartikainen, J.

J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
[CrossRef]

Helmers, H.

H. Helmers, W. Witte, “Holographic study of laser-induced liquid surface deformations,” Opt. Commun. 49, 21–23 (1984).
[CrossRef]

Jaarinene, J.

J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
[CrossRef]

Kolomenskii, Al. A.

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Al. A. Kolomenskii, “Perturbations of the surface of a liquid interacting with modulated optical radiation,” Sov. J. Quantum Electron. 19, 365–368 (1989).
[CrossRef]

Al. A. Kolomenskii, “Excitation of surface waves by volume sources in a compressible liquid,” Sov. Tech. Phys. Lett. 12, 100–101 (1986).

Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).

A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).

Koschmiedier, E. L.

E. L. Koschmiedier, Benard Cells and Taylor Vortices (Cambridge U. Press, Cambridge, 1993).

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), p. 237.

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), p. 237.

Luukkala, M.

J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
[CrossRef]

Lyamshev, L. M.

S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
[CrossRef]

Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).

L. M. Lyamshev, K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust. 27, 357–371 (1981).

Mikhalevich, V. G.

Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).

Miyano, K.

K. Miyano, “Local mechanical properties of monomolecular films on water measured with a capillary wave probe,” Langmuir 6, 1254–1259 (1990).
[CrossRef]

Naugol’nykh, K. A.

L. M. Lyamshev, K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust. 27, 357–371 (1981).

Puchenkov, O. V.

S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
[CrossRef]

Rastopov, S. F.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).

Schuessler, H. A.

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Shih, L. B.

L. B. Shih, “Surface fluctuation spectroscopy: a novel technique for characterizing liquid interfaces,” Rev. Sci. Instrum. 55, 716–726 (1984).
[CrossRef]

Sukhodolskii, A. T.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).

Witte, W.

H. Helmers, W. Witte, “Holographic study of laser-induced liquid surface deformations,” Opt. Commun. 49, 21–23 (1984).
[CrossRef]

Can. J. Phys.

J. Hartikainen, J. Jaarinene, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1986).
[CrossRef]

J. Colloid Interface Sci.

A. Hajiloo, “Analysis of laser-induced capillary waves,” J. Colloid Interface Sci. 116, 59–69 (1987).
[CrossRef]

Langmuir

K. Miyano, “Local mechanical properties of monomolecular films on water measured with a capillary wave probe,” Langmuir 6, 1254–1259 (1990).
[CrossRef]

Opt. Commun.

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

H. Helmers, W. Witte, “Holographic study of laser-induced liquid surface deformations,” Opt. Commun. 49, 21–23 (1984).
[CrossRef]

Phys. Rev. B

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Rev. Sci. Instrum.

L. B. Shih, “Surface fluctuation spectroscopy: a novel technique for characterizing liquid interfaces,” Rev. Sci. Instrum. 55, 716–726 (1984).
[CrossRef]

Sov. J. Quantum Electron.

Al. A. Kolomenskii, “Perturbations of the surface of a liquid interacting with modulated optical radiation,” Sov. J. Quantum Electron. 19, 365–368 (1989).
[CrossRef]

Sov. Phys. Acoust.

Al. A. Kolomenskii, L. M. Lyamshev, V. G. Mikhalevich, “Influence of surface roughness of a liquid on the thermal regime of a thermooptical source,” Sov. Phys. Acoust. 31, 453–456 (1985).

L. M. Lyamshev, K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust. 27, 357–371 (1981).

Sov. Phys. Usp.

S. V. Egerev, L. M. Lyamshev, O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739–762 (1990).
[CrossRef]

Sov. Tech. Phys.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodolskii, “Coherent correlation spectroscopy of capillary waves,” Sov. Tech. Phys. 35, 374–376 (1990).

Sov. Tech. Phys. Lett.

Al. A. Kolomenskii, “Excitation of surface waves by volume sources in a compressible liquid,” Sov. Tech. Phys. Lett. 12, 100–101 (1986).

A. I. Bozhkov, F. V. Bunkin, Al. A. Kolomenskii, “Active four-photon spectroscopy of capillary waves,” Sov. Tech. Phys. Lett. 4, 291–292 (1978).

Other

E. L. Koschmiedier, Benard Cells and Taylor Vortices (Cambridge U. Press, Cambridge, 1993).

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), p. 237.

H. H. Bau, L. A. Bertram, S. A. Korpela, eds., Bifurcation Phenomena and Chaos in Thermal Convection (American Society of Mechanical Engineers, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: M’s, mirrors; L’s, lenses.

Fig. 2
Fig. 2

Surface inclination versus laser radiation intensity: (a) full range of intensities, (b) region of small intensities. The signals of the capillary wave excited at f = 40 Hz (□) and f = 60 Hz (▲) as well as the average surface deformation (●) are shown. Lines 1 and 2 are calculated according to Eqs. (18) and (22) for f = 40 Hz and f = 60 Hz, respectively.

Fig. 3
Fig. 3

Temporal development of the inclination of the average surface deformation at laser power P = 140 mW and distance r = 5 mm for radius of the laser beam a = 0.7 mm.

Fig. 4
Fig. 4

Capillary wave amplitude as a function of laser intensity for several focusing rates at a constant laser power P = 140 mW.

Fig. 5
Fig. 5

Frequency dependence of the capillary wave amplitude for three radii of the laser beam: a = 2.2 mm (curve 1), a = 1.8 mm (curve 2), and a = 0.2 mm (curve 3). At a = 2.2 mm two resonances can be seen (curve 1). For a = 1.8 mm three distinct resonances are observed, at f = 10.0, 17.5, 30.5 Hz (curve 2 is depicted with a decrease of the ordinate by a factor of 2). At a = 0.2 mm (curve 3) the resonance peaks are not well pronounced. Solid curves are guides for the eye.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Ωn2=gkn+σkn3/ρtanhknh.
θ=-n=1Rekn2Fknτn2ρΔkn, ω J1knrexp-iωt,
Fkn=p˜ˆ+knσTT˜ˆ,  σT=σ/T, Δkn, ω=Ωn2τn2+1-iωτn2-mn/kn, Ωn=gkn+σkn3/ρ1/2, τn=ρ/2ηkn2, mn=kn1-iωτn1/2,
T˜ˆkp˜ˆk=2b2J02kb0bdrrJ0krT˜rp˜r.
d2T˜dz2-kT2T˜=-μmI0κexp-μz,
T˜=μmI0κkTμ+kT.
T=μI0t/ρcp,  t  μ2χ-1, T=2I0/π ρcpt/χ1/2,  μ2χ-1  t  a2/χ, T=aI0/π ρcpχtan-12χt1/2/a,  t  a2/χ.
Ts=π aI02ρcpχ,
Ic,bμ2ηχ2cpa2αg.
Ic,Mμ4ηχ2a2ρcp16|σT|.
Tsημ2P4π|σT|ρcp1/2.
υsNTs,  Tsα0Δ+β/2,
p˜ρυsυ˜,  υ˜NT˜,  T˜α˜ expiφω2+τr20.5,
υυsa2a2+r2,  Δp- ρυs22a2a2+r22,
p0=p+ρυ2/2.
p-p0-σ 1rrr ζr+ρgζ-2ηυz/z=0.
ζrθ1σ0kΔpˆk+2ηυˆz/ak2+ρg/σJ0kr-kJ1krdk,
τ=1/μ2χ.
τ1=a2/χ,  τ2=2Δ-1,
F=FT=gknknσTT˜, gkn=I0-10drIrJ0knr=πa2 exp-kn2a24.
F=Fp+FT,  Fp=gknp˜, gkn=0drra2a2+r22J0knr,
1/Δ2ΩnΩn-ω-i/τn-1
2bγd  1.
θ=k2r1/2FkDr, kexpikr+5π/43σ+ρg/k2,

Metrics