Abstract

Several mechanisms for the excitation of capillary waves and for the development of the average deformation of a liquid surface under the action of a modulated laser beam are considered. The amplitude of the capillary wave in a strongly absorbing solution of the dye LDS 751 in ethylene glycol is experimentally studied as a function of laser intensity. Consecutive changes in the predominant mechanism of the excitation with increasing laser intensity are observed and described. At low laser intensities the mechanism connected with the creation of a surface tension gradient prevails. This mechanism becomes nonlinear with increasing influence of the convective motion. In addition, pressure pulsations of the convective flow start to contribute significantly to the generation process. The resonances of capillary waves in a cylindrical container are also investigated and used for determining the surface tension and viscosity of the liquid.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Capillary waves on an asymmetric liquid film of pentane on water

Denis Fenistein, Gerard H. Wegdam, William V. Meyer, and J. Adin Mann
Appl. Opt. 40(24) 4134-4139 (2001)

Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination

Alexis Casner, Jean-Pierre Delville, and Iver Brevik
J. Opt. Soc. Am. B 20(11) 2355-2362 (2003)

Theory of microdroplet and microbubble deformation by Gaussian laser beam

Simen Å. Ellingsen
J. Opt. Soc. Am. B 30(6) 1694-1710 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription