Abstract

A multiple-prism grating solid-state dye laser oscillator was demonstrated with its grating, deployed in a Littrow configuration, under total illumination at reduced intracavity beam expansion. This compact cavity yields laser linewidths in the 350-MHz range and smooth temporal pulses with a near-Gaussian profile.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, “Solid-state dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
    [CrossRef]
  2. F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
    [CrossRef]
  3. F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1991), pp. 133–183.
  4. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
    [CrossRef]
  5. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  6. S. Popov, “Dye photodestruction in a solid-state dye laser with polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  7. S. Popov, “Influence of pump repetition rate on dye photostability in a solid-state dye laser with polymeric gain medium,” Pure Appl. Opt. 7, 1379–1388 (1998).
    [CrossRef]
  8. F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]

1998 (2)

S. Popov, “Dye photodestruction in a solid-state dye laser with polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
[CrossRef]

S. Popov, “Influence of pump repetition rate on dye photostability in a solid-state dye laser with polymeric gain medium,” Pure Appl. Opt. 7, 1379–1388 (1998).
[CrossRef]

1997 (2)

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

1995 (2)

1994 (1)

Costela, A.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Duarte, F. J.

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Solid-state dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1991), pp. 133–183.

Ehrlich, J. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Garcia-Moreno, I.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Kaivola, M.

Maslyukov, A.

Nyholm, K.

Popov, S.

Sastre, R.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Sokolov, S.

Taylor, T. S.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Appl. Opt. (3)

Opt. Commun. (1)

F. J. Duarte, “Solid-state dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

Opt. Laser Technol. (1)

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

Opt. Quantum Electron. (1)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Pure Appl. Opt. (1)

S. Popov, “Influence of pump repetition rate on dye photostability in a solid-state dye laser with polymeric gain medium,” Pure Appl. Opt. 7, 1379–1388 (1998).
[CrossRef]

Other (1)

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1991), pp. 133–183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the solid-state MPL grating dye-laser oscillator. This figure presents a fairly accurate description of the optimized architecture with each optical component drawn to scale. The angle of incidence at the 3300-l/mm Littrow grating is θ ≈ 77°.

Fig. 2
Fig. 2

Fabry–Perot interferogram of the single-longitudinal-mode emission. Here the FSR of the interferometer is 7.49 GHz.

Fig. 3
Fig. 3

Smooth near-Gaussian temporal profile typical of the emission of this MPL grating solid-state dye laser oscillator. The temporal scale is 1 ns/div.

Tables (1)

Tables Icon

Table 1 Performance of Optimized Multiple-Prism Grating Solid-State Dye Laser Oscillator

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔλD=ΔθRMθ/λG+Rϕ/λP-1,

Metrics