Abstract

Solid-state dye lasers based on poly(methyl methacrylate) (PMMA) doped with Pyrromethene 567 dye (P567) have been investigated. The preparation techniques employed provided high photostability and laser damage threshold for P567 in pure PMMA with 270,000 pulses emitted before the conversion efficiency fell to half its initial value for a pump fluence of 0.16 J cm-2. When PMMA was modified with 1,4-diazobicyclo [2,2,2] octane singlet oxygen quencher, the longevity increased to 550,000 pulses, corresponding to a normalized photostability of 270 GJ mol-1. Modification of PMMA with a triplet quencher (perylene) yielded no improvement, but in ethanol solutions both additives enhanced photostability. It is possible that in PMMA, stabilization by means of triplet quenching that depends on dye diffusion is prevented but that stabilization by means of singlet oxygen quenching that depends on the faster oxygen diffusion rate will succeed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
    [CrossRef]
  2. H. Schmidt, “Organic modification of glass structure, new glass or new polymer?” J. Non-Cryst. Solids 112, 419–423 (1989).
    [CrossRef]
  3. G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
    [CrossRef]
  4. X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
    [CrossRef]
  5. M. D. Rahn, T. A. King, “High-performance solid-state dye laser based on Perylene-Orange doped polycom glass,” J. Mod. Opt. 45, 1259–1267 (1998).
  6. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
    [CrossRef]
  7. S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
    [CrossRef]
  8. A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
    [CrossRef]
  9. G. Seybold, G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11, 303–317 (1989).
    [CrossRef]
  10. M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
    [CrossRef]
  11. M. P. Oneil, “Synchronously pumped visible laser dye with twice the efficiency of Rhodamine 6G,” Opt. Lett. 18, 37–38 (1993).
    [CrossRef]
  12. A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”
  13. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J.-P. Boilot “Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels,” Appl. Opt. 36, 6760–6763 (1997).
    [CrossRef]
  14. D. Pacheco, H. R. Aldag, “Comparison of the laser performance of solid state dye media under long- and short-pulse excitation,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 2–12 (1998).
    [CrossRef]
  15. R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
    [CrossRef]
  16. R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
    [CrossRef]
  17. M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  18. T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
    [CrossRef]
  19. P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
    [CrossRef]
  20. A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
    [CrossRef]
  21. G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
    [CrossRef]
  22. K. I. Priyadarsini, J. P. Mittal, “Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes,” J. Photochem. Photobiol. A 61, 381–388 (1991).
    [CrossRef]

1999 (1)

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

1998 (2)

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

M. D. Rahn, T. A. King, “High-performance solid-state dye laser based on Perylene-Orange doped polycom glass,” J. Mod. Opt. 45, 1259–1267 (1998).

1997 (2)

1994 (2)

G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
[CrossRef]

X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
[CrossRef]

1993 (2)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

M. P. Oneil, “Synchronously pumped visible laser dye with twice the efficiency of Rhodamine 6G,” Opt. Lett. 18, 37–38 (1993).
[CrossRef]

1992 (1)

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

1991 (2)

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

K. I. Priyadarsini, J. P. Mittal, “Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes,” J. Photochem. Photobiol. A 61, 381–388 (1991).
[CrossRef]

1990 (1)

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

1989 (2)

H. Schmidt, “Organic modification of glass structure, new glass or new polymer?” J. Non-Cryst. Solids 112, 419–423 (1989).
[CrossRef]

G. Seybold, G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11, 303–317 (1989).
[CrossRef]

1988 (1)

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

1985 (1)

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Aldag, H. R.

D. Pacheco, H. R. Aldag, “Comparison of the laser performance of solid state dye media under long- and short-pulse excitation,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 2–12 (1998).
[CrossRef]

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Anderson, R. S.

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

Barroso, J.

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

Boilot, J.-P.

Bonilla, S.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Boyer, J. H.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Brun, A.

Buntinx, G.

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

Canva, M.

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Chaput, F.

Clough, R. L.

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

Costela, A.

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

Davidson, K.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Dillon, M. P.

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

Dyumaev, K. M.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Faloss, M.

Gall, G.

G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

Gardlund, Z.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Georges, P.

Giffin, S. M.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Gorman, A. A.

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”

Gromov, D. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Hamblett, I.

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”

Haskell, T. G.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

King, T. A.

M. D. Rahn, T. A. King, “High-performance solid-state dye laser based on Perylene-Orange doped polycom glass,” J. Mod. Opt. 45, 1259–1267 (1998).

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
[CrossRef]

X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
[CrossRef]

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”

Kristiansen, M.

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

Lambert, C.

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

Li, X.

G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
[CrossRef]

X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
[CrossRef]

Manenkov, A. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Maslukov, A. P.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Matyushin, G. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

McKinnie, I. T.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Mittal, J. P.

K. I. Priyadarsini, J. P. Mittal, “Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes,” J. Photochem. Photobiol. A 61, 381–388 (1991).
[CrossRef]

Nechitailo, V. S.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

Ogilby, P. R.

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

Oneil, M. P.

Pacheco, D.

D. Pacheco, H. R. Aldag, “Comparison of the laser performance of solid state dye media under long- and short-pulse excitation,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 2–12 (1998).
[CrossRef]

Pallikari-Viras, F.

X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
[CrossRef]

Pavlopoulos, T. G.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Peyghambarian, N.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Picarello, S. C.

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

Poizat, O.

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

Politzer, I. R.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Priyadarsini, K. I.

K. I. Priyadarsini, J. P. Mittal, “Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes,” J. Photochem. Photobiol. A 61, 381–388 (1991).
[CrossRef]

Prokhorov, A. M.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

Rahn, M. D.

M. D. Rahn, T. A. King, “High-performance solid-state dye laser based on Perylene-Orange doped polycom glass,” J. Mod. Opt. 45, 1259–1267 (1998).

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

Sastre, R.

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

Schmidt, H.

H. Schmidt, “Organic modification of glass structure, new glass or new polymer?” J. Non-Cryst. Solids 112, 419–423 (1989).
[CrossRef]

Seybold, G.

G. Seybold, G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11, 303–317 (1989).
[CrossRef]

Shah, M.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Smith, G. J.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Soong, M. L.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Spencer, B.

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

Standern, M. C.

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Thangaraj, K.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Uhlmann, D. R.

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

Valat, P.

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

Wadsworth, W. J.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Wagenblast, G.

G. Seybold, G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11, 303–317 (1989).
[CrossRef]

Wintgens, V.

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

Wolford, L. T.

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Woolhouse, A. D.

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Costela, I. Garcia-Moreno, J. Barroso, R. Sastre “Studies on laser action from polymeric matrices doped with Coumarin 503,” Appl. Phys. B 67, 167–173 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid state dye laser,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Dyes Pigm. (1)

G. Seybold, G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11, 303–317 (1989).
[CrossRef]

Heteroatom. Chem. (1)

M. Shah, K. Thangaraj, M. L. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

A. A. Gorman, I. Hamblett, C. Lambert, B. Spencer, M. C. Standern, “Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(1Δg), with both physical and chemical quenchers—variable temperature, time resolved infrared luminescence studies,” J. Am. Chem. Soc. 110, 8053–8059 (1988).
[CrossRef]

J. Mod. Opt. (1)

M. D. Rahn, T. A. King, “High-performance solid-state dye laser based on Perylene-Orange doped polycom glass,” J. Mod. Opt. 45, 1259–1267 (1998).

J. Non Cryst. Solids (1)

X. Li, T. A. King, F. Pallikari-Viras, “Characteristics of composites based on PMMA modified gel-silica glasses,” J. Non Cryst. Solids 170, 243–249 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

H. Schmidt, “Organic modification of glass structure, new glass or new polymer?” J. Non-Cryst. Solids 112, 419–423 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
[CrossRef]

J. Photochem. Photobiol. A (1)

K. I. Priyadarsini, J. P. Mittal, “Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes,” J. Photochem. Photobiol. A 61, 381–388 (1991).
[CrossRef]

J. Phys. Chem. (1)

G. Buntinx, P. Valat, V. Wintgens, O. Poizat, “Photoreduction of 4,4′-bipyridine by triethylamine and by 1,4-diazabicylclo[2.2.2]octane in acetonitrile as studied by nanosecond absorption and Raman spectroscopies,” J. Phys. Chem. 95, 9347–9352 (1991).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

G. Gall, X. Li, T. A. King, “Optical characterisation of sol-gel optical composites,” J. Sol-Gel Sci. Technol. 2, 775–778 (1994).
[CrossRef]

Macromolecules (1)

P. R. Ogilby, M. P. Dillon, M. Kristiansen, R. L. Clough, “Quenching of singlet oxygen in solid organic polymers,” Macromolecules 25, 3399–3405 (1992).
[CrossRef]

Opt. Commun. (1)

S. M. Giffin, I. T. McKinnie, W. J. Wadsworth, A. D. Woolhouse, G. J. Smith, T. G. Haskell, “Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers,” Opt. Commun. 161, 163–170 (1999).
[CrossRef]

Opt. Lett. (1)

Other (5)

T. I. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann, S. Bonilla, N. Peyghambarian, “Molecular engineering and photostability of laser dyes within sol-gel hosts,” in Solid-State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 141–152 (1997).
[CrossRef]

A. A. Gorman, I. Hamblett, T. A. King (Laser Photonics Research Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK), and M. D. Rahn, are preparing a manuscript with the title “A pulse radiolysis and pulsed laser study of the Pyrromethene 567 triplet state.”

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

D. Pacheco, H. R. Aldag, “Comparison of the laser performance of solid state dye media under long- and short-pulse excitation,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 2–12 (1998).
[CrossRef]

R. S. Anderson, R. E. Hermes, G. A. Matyushin, V. S. Nechitailo, S. C. Picarello, “Photostability of dye doped modified polymer at extremely high intensities: Medlite™ laser system,” in Solid-State Lasers VII, R. Scheps, ed., Proc. SPIE3265, 13–20 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Slope efficiencies of 3.36 × 10-4 M P567 in ethanol versus DABCO additive concentration for a 3.5-mL solution in a 10-mm path-length cuvette, and 1.66 × 10-4 M P567 in ethanol versus perylene additive concentration for a 0.65-mL solution in a 2-mm path-length cuvette.

Fig. 2
Fig. 2

Conversion efficiency versus the normalized energy input (accumulated pump energy onto the sample per mole of dye molecules in the gain region) for 1 × 10-5 M P567 in ethanol with no DABCO and with 1 × 10-4 M DABCO. Tests were performed in a 10-mm path-length cuvette containing 3.5 mL of solution. The pulse energy was 9 mJ. Inset, normalized photostability of P567 in ethanol versus DABCO concentration.

Fig. 3
Fig. 3

Conversion efficiency versus the normalized energy input for 1.66 × 10-4 M P567 in ethanol with various concentrations of perylene additive. Tests were performed in a 2-mm path-length cuvette containing 0.65 mL of solution. The pulse energy was 11.7 mJ. Inset, normalized photostability of P567 in ethanol versus perylene concentration.

Fig. 4
Fig. 4

Conversion efficiency versus the number of excitation pulses for 3.36 × 10-4 M P567 in PMMA with various concentrations of DABCO additive. The pump pulse energy was 5 mJ. Inset, slope efficiency of the same samples versus concentration of DABCO.

Fig. 5
Fig. 5

Conversion efficiency versus the number of excitation pulses for 3.36 × 10-4 M P567 in PMMA with various concentrations of perylene additive. The pump pulse energy was 5 mJ. Inset, slope efficiency of the same samples versus concentration of perylene.

Tables (2)

Tables Icon

Table 1 Summary of Laser Performance Data of P567 in Ethanol with Various Concentrations of DABCO and Perylene Additives

Tables Icon

Table 2 Summary of Laser Performance Data of P567 in PMMA with Various Concentrations of DABCO and Perylene Additives

Metrics