Abstract

Ridge waveguide lasers, integrated with single deep-surface distributed Bragg reflectors (DBR’s) in the passive section, were fabricated with a GaAs–AlGaAs double-quantum-well structure in an asymmetric waveguide. Third-order gratings, with a period of 389 nm and defined by holographic lithography, were formed by low-damage reactive ion etching processes. The grating losses and optical coupling coefficients were estimated, in particular, by use of the relationship between the real and the effective grating lengths that were computed and reexamined by measurements of grating periodicity and mode spacing. By use of two different geometries, we produced guide lines for obtaining high-performance lasing properties for these surface-grating DBR lasers. Additionally, a detailed analysis of lasing wavelength shifts was carried out for this study. It was found that injected-carrier-induced effects shift the lasing wavelength much more than gain–loss competition within an extended DBR laser cavity.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
    [CrossRef]
  2. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
    [CrossRef]
  3. K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990).
    [CrossRef]
  4. Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
    [CrossRef]
  5. H. M. Stoll, “Optimally coupled, GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
    [CrossRef]
  6. W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
    [CrossRef]
  7. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
    [CrossRef]
  8. H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
    [CrossRef]
  9. S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
    [CrossRef]
  10. D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
    [CrossRef]
  11. G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
    [CrossRef]
  12. R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
    [CrossRef]
  13. T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
    [CrossRef]
  14. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Sec. 8-6.
  15. F. Vasey, J. M. Stauffer, Y. Oppliger, F. K. Reinhart, “Characterization of an AlGaAs rib waveguide using a grating in a Fabry–Perot etalon configuration,” Appl. Opt. 30, 3897–3906 (1991).
    [CrossRef] [PubMed]
  16. A. C. Beer, R. K. Willardson, “Dynamic Single-mode semiconductor lasers with a distributed reflector,” in Vol. 22 of Semiconductors and Semimetals, W. T. Tsang, ed. (Academic Press, New York, 1985), Chap. 4.
  17. A. Yariv, Optical Electronics, 4th ed. (Wiley, New York, 1991), Sec. 13-4.
  18. T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
    [CrossRef]
  19. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Sec. 8-2.
  20. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), Sec. 8-3.
  21. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Sec. 7-5.
    [CrossRef]
  22. Ref. 20, Sec. 8-7.
  23. C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
    [CrossRef]
  24. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1991), Sec. 4.3.
  25. Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985).
    [CrossRef]
  26. A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987).
    [CrossRef]
  27. J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
    [CrossRef]
  28. H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
    [CrossRef]

1997 (1)

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

1996 (1)

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

1995 (1)

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

1994 (3)

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

1991 (2)

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

F. Vasey, J. M. Stauffer, Y. Oppliger, F. K. Reinhart, “Characterization of an AlGaAs rib waveguide using a grating in a Fabry–Perot etalon configuration,” Appl. Opt. 30, 3897–3906 (1991).
[CrossRef] [PubMed]

1990 (2)

T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[CrossRef]

K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990).
[CrossRef]

1989 (2)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

1987 (2)

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987).
[CrossRef]

1985 (1)

Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985).
[CrossRef]

1983 (1)

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
[CrossRef]

1982 (1)

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

1981 (1)

C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[CrossRef]

1979 (1)

H. M. Stoll, “Optimally coupled, GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

Abe, H.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Sec. 7-5.
[CrossRef]

Alwan, J. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Andreadakis, N.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Arai, S.

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
[CrossRef]

Arakawa, Y.

Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

Ayling, S.

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Ayling, S. G.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Beer, A. C.

A. C. Beer, R. K. Willardson, “Dynamic Single-mode semiconductor lasers with a distributed reflector,” in Vol. 22 of Semiconductors and Semimetals, W. T. Tsang, ed. (Academic Press, New York, 1985), Chap. 4.

Beernink, K. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Bertness, K. A.

C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Sec. 8-6.

Bryan, R. P.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Bryce, A. C.

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Burrus, C. A.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

Chen, Y. K.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Choa, F. S.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Chu, S. N. G.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Cockerill, T. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Colas, E.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Coleman, J. J.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

Copeland, J. A.

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

De La Rue, R. M.

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Dentai, A. G.

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Sec. 7-5.
[CrossRef]

Epler, J. E.

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Forbes, D. V.

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Sec. 8-2.

Henry, C. H.

C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[CrossRef]

Hofstetter, D.

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Hughes, J. S.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1991), Sec. 4.3.

Imai, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Ishikawa, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Jones, A. M.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

Kapon, E.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Kishino, K.

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
[CrossRef]

Koch, T. L.

T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[CrossRef]

Kojima, K.

K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990).
[CrossRef]

Koren, U.

T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[CrossRef]

Kotaki, Y.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Kyuma, K.

K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990).
[CrossRef]

Lammert, R. M.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

Lee, T. P.

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

Logan, R. A.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[CrossRef]

Magill, P.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Marcuse, D.

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

Marsh, J. H.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Miller, L. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Moreira, M. V.

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

Oppliger, Y.

Osowski, M. L.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

Reichmann, K. C.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Reinhart, F. K.

Roberts, J. S.

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

Roh, S. D.

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

Schwartz, C. L.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Schwarz, S. A.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Sergent, A. M.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Smith, G. M.

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

Söchtig, J.

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Soda, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Song, Y. P.

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Stauffer, J. M.

Stoffel, N. G.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Stoll, H. M.

H. M. Stoll, “Optimally coupled, GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

Sudo, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Suematsu, Y.

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
[CrossRef]

Suzuki, A.

A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987).
[CrossRef]

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), Sec. 8-3.

Tomita, A.

A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987).
[CrossRef]

Tsang, W. T.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Vasey, F.

Verdeyen, J. T.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

Vögele, B.

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Werner, J.

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

Willardson, R. K.

A. C. Beer, R. K. Willardson, “Dynamic Single-mode semiconductor lasers with a distributed reflector,” in Vol. 22 of Semiconductors and Semimetals, W. T. Tsang, ed. (Academic Press, New York, 1985), Chap. 4.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Sec. 8-6.

Wu, M. C.

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

Yamakoshi, S.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

Yariv, A.

Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985).
[CrossRef]

A. Yariv, Optical Electronics, 4th ed. (Wiley, New York, 1991), Sec. 13-4.

Yee, H. H.

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Zappe, H. P.

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989).
[CrossRef]

Electron. Lett. (2)

D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994).
[CrossRef]

G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994).
[CrossRef]

IEE Proc. Optoelectron. (1)

H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

IEEE J. Quantum Electron. (6)

Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985).
[CrossRef]

A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987).
[CrossRef]

T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989).
[CrossRef]

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987).
[CrossRef]

W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991).
[CrossRef]

H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995).
[CrossRef]

R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

H. M. Stoll, “Optimally coupled, GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

J. Appl. Phys. (1)

C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981).
[CrossRef]

J. Lightwave Technol. (2)

Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983).
[CrossRef]

T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990).
[CrossRef]

Semicond. Sci. Technol. (1)

K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990).
[CrossRef]

Other (9)

S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Sec. 8-6.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Sec. 8-2.

G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), Sec. 8-3.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Sec. 7-5.
[CrossRef]

Ref. 20, Sec. 8-7.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1991), Sec. 4.3.

A. C. Beer, R. K. Willardson, “Dynamic Single-mode semiconductor lasers with a distributed reflector,” in Vol. 22 of Semiconductors and Semimetals, W. T. Tsang, ed. (Academic Press, New York, 1985), Chap. 4.

A. Yariv, Optical Electronics, 4th ed. (Wiley, New York, 1991), Sec. 13-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a ridge waveguide DBR laser with deep-surface gratings.

Fig. 2
Fig. 2

Asymmetric DQW heterostructure used for this DBR laser fabrication.

Fig. 3
Fig. 3

(a) Scanning electron microscope micrograph of the (a) photoresist patterned by the holographic recording with a period of 389 nm and (b) the pattern after GaAs etching. Note that the triangular Ni–Cr masking layers were not yet removed.

Fig. 4
Fig. 4

L–I curves of a normal ridge waveguide laser and the DBR lasers, with two different device layouts, obtained with the same material and the same processing method.

Fig. 5
Fig. 5

Lasing spectra of group 1 DBR lasers at different injection levels (25 °C).

Fig. 6
Fig. 6

Emission spectrum of a DBR laser under subthreshold for measurement of the mode spacing near the Bragg peak.

Fig. 7
Fig. 7

Relationship between the effective and the real grating lengths of DBR lasers with the coupling coefficients and the grating losses as parameters.

Tables (1)

Tables Icon

Table 1 Measured Data for DBR Lasers with Two Different Geometries

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλm=λ22ngeLt,
ΦΔβΔβ=0=2Leff,
Leff=12ag/2Lgtan hγ0Lg/γ0Lg-1/cos h2γ0Lg+tan h2γ0Lgαg/2tan h2γ0Lg+γ0 tan hγ0Lg,
Δαm=1La+Leff lnRλ0Rλ1,

Metrics