Abstract

A new experimental method for direct determination of the upconversion coefficient C up in Er-doped glasses is presented. This method is based on measurement of the dependence on pump power of the fluorescence quantum yield at 1.54 µm and of the excited-state absorption. Two methods are used for determination of the population of the excited Er ions. The first is based on the measurement of the variation in stimulated emission and on the variation in ground-state absorption for the 4 I 15/24 I 13/2 transition range. In the second, the excited-state absorption is measured for the 4 I 13/24 F 7/2 transition. This method is successfully applied to Er-doped silicate glass fibers. The value of C up experimentally obtained is in good agreement with previously published results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Quimby, W. J. Miniscalco, B. Thompson, “Quantitative characterisation of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. F. Digonnet, ed., Proc. SPIE2073, 2–12 (1993).
    [CrossRef]
  2. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
    [CrossRef]
  3. M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.
  4. J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
    [CrossRef]
  5. T. Ohtsuki, S. Honkanen, S. I. Najafi, N. Peyghambarian, “Cooperative upconversion effects on the performance of Er3+-doped phosphate glass waveguide amplifiers,” J. Opt. Soc. Am. B 14, 1838–1845 (1997).
    [CrossRef]
  6. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda-lime silicate and aluminosilicate glasses,” Opt. Lett. 22, 772–774 (1997).
    [CrossRef] [PubMed]
  7. N. A. Tolstoy, A. P. Abramov, “Theoretical interpretation of nonlinear quenching,” Opt. Spektrosk. 20, 496–498 (1966).
  8. N. A. Tolstoy, A. P. Abramov, “Non-linear quenching of luminescence,” in Proceedings of the International Conference on Luminescence (Akademiai Kiado, Budapest, 1966), pp. 1403–1407.
  9. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  10. W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
    [CrossRef] [PubMed]
  11. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  12. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  13. C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
    [CrossRef]
  14. V. M. Agranovich, M. D. GalaninElectronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982).
  15. M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen, P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239.
  16. J. L. Philipsen, A. Bjarklev, “Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses,” IEEE J. Quantum Electron. 33, 845–854 (1997).
    [CrossRef]
  17. A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

1997 (3)

1995 (2)

E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995).
[CrossRef]

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

1991 (1)

1989 (1)

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

1975 (1)

A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

1966 (1)

N. A. Tolstoy, A. P. Abramov, “Theoretical interpretation of nonlinear quenching,” Opt. Spektrosk. 20, 496–498 (1966).

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Abramov, A. P.

N. A. Tolstoy, A. P. Abramov, “Theoretical interpretation of nonlinear quenching,” Opt. Spektrosk. 20, 496–498 (1966).

N. A. Tolstoy, A. P. Abramov, “Non-linear quenching of luminescence,” in Proceedings of the International Conference on Luminescence (Akademiai Kiado, Budapest, 1966), pp. 1403–1407.

Agranovich, V. M.

V. M. Agranovich, M. D. GalaninElectronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982).

Ainslie, B. J.

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Armitage, J. R.

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Atkins, C. G.

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Bjarklev, A.

J. L. Philipsen, A. Bjarklev, “Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses,” IEEE J. Quantum Electron. 33, 845–854 (1997).
[CrossRef]

Bruce, A. J.

Camy, P.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Cockroft, N. J.

Craig-Ryan, S. P.

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Diemeer, M. B. J.

Dmitryuk, A. V.

A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

Galanin, M. D.

V. M. Agranovich, M. D. GalaninElectronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982).

Gosnell, T. R.

Hehlen, M. P.

Hempstead, M.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Hendriksen, B.

Honkanen, S.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Karapetyan, G. O.

A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

Laborde, P.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Lerminiaux, C.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Maksimov, L. V.

A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

Miniscalco, W. J.

W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
[CrossRef] [PubMed]

R. S. Quimby, W. J. Miniscalco, B. Thompson, “Quantitative characterisation of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. F. Digonnet, ed., Proc. SPIE2073, 2–12 (1993).
[CrossRef]

Najafi, S. I.

Nouh, S.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

Nykolak, G.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohtsuki, T.

Peyghambarian, N.

Philipsen, J. L.

J. L. Philipsen, A. Bjarklev, “Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses,” IEEE J. Quantum Electron. 33, 845–854 (1997).
[CrossRef]

Polman, A.

Priolo, F.

Quimby, R. S.

W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
[CrossRef] [PubMed]

R. S. Quimby, W. J. Miniscalco, B. Thompson, “Quantitative characterisation of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. F. Digonnet, ed., Proc. SPIE2073, 2–12 (1993).
[CrossRef]

Roman, J. E.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Shmulovich, J.

Snoeks, E.

Thompson, B.

R. S. Quimby, W. J. Miniscalco, B. Thompson, “Quantitative characterisation of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. F. Digonnet, ed., Proc. SPIE2073, 2–12 (1993).
[CrossRef]

Tolstoy, N. A.

N. A. Tolstoy, A. P. Abramov, “Theoretical interpretation of nonlinear quenching,” Opt. Spektrosk. 20, 496–498 (1966).

N. A. Tolstoy, A. P. Abramov, “Non-linear quenching of luminescence,” in Proceedings of the International Conference on Luminescence (Akademiai Kiado, Budapest, 1966), pp. 1403–1407.

van den Hoven, G. N.

Weber, M. J.

M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen, P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239.

Wilkinson, J. S.

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Wyatt, R.

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Ye, C.

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

Ye, C. C.

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

Appl. Phys. Lett. (1)

J. E. Roman, M. Hempstead, C. Ye, S. Nouh, P. Camy, P. Laborde, C. Lerminiaux, “1.7 µm excited state absorption measurement in erbium-doped glasses,” Appl. Phys. Lett. 67, 470–472 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Philipsen, A. Bjarklev, “Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses,” IEEE J. Quantum Electron. 33, 845–854 (1997).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibers,” Opt. Commun. 73, 217–222 (1989).
[CrossRef]

Opt. Lett. (2)

Opt. Spektrosk. (1)

N. A. Tolstoy, A. P. Abramov, “Theoretical interpretation of nonlinear quenching,” Opt. Spektrosk. 20, 496–498 (1966).

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Zh. Prikl. Spectrosk. (1)

A. V. Dmitryuk, G. O. Karapetyan, L. V. Maksimov, “Phenomena of activator segregation and its spectroscopic manifestations,” Zh. Prikl. Spectrosk. 22, 153–182 (1975).

Other (6)

R. S. Quimby, W. J. Miniscalco, B. Thompson, “Quantitative characterisation of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. F. Digonnet, ed., Proc. SPIE2073, 2–12 (1993).
[CrossRef]

M. Hempstead, J. E. Roman, C. C. Ye, J. S. Wilkinson, P. Camy, P. Laborde, C. Lerminiaux, “Anomalously high uniform upconversion in an erbium-doped waveguide amplifiers,” in Proceedings of the 7th European Conference on Integrated Optics (ECIO 95) (Delft U. Press, Delft, The Netherlands, 1995), pp. 233–236, paper TuC4.

N. A. Tolstoy, A. P. Abramov, “Non-linear quenching of luminescence,” in Proceedings of the International Conference on Luminescence (Akademiai Kiado, Budapest, 1966), pp. 1403–1407.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

V. M. Agranovich, M. D. GalaninElectronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982).

M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen, P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Upconversion transition in a pair of Er3+ ions. (a) Two ions are excited to the metastable 4 I 13/2 manifold. (b) Energy transfer from one Er ion to the other. (c) The remaining excited Er ion rapidly decays back to the 4 I 13/2 manifold.

Fig. 2
Fig. 2

Setup for measurement of C up by (a) the first technique and (b) the second technique: 1, Ar laser; 2, mirror; 3, set of filters to attenuate laser light; 4, glass plate; 5, photodiode; 6, digital voltmeter; 7, tungsten lamp; 8, chopper for probe light; 9, 13, lenses; 10, mirror transmitting probe light and reflecting laser light; 11, 20× micro objective; 12, fiber sample; 14, set of filters to attenuate the fluorescence light; 15, chopper for (a) fluorescence light and (b) pump light; 16, monochromator; 17, photodiode; 18, lock-in amplifier; 19, digital voltmeter. In (b) the inset shows the appearance of a differential signal from the probe light.

Fig. 3
Fig. 3

Energy-transfer diagrams corresponding to (a) technique 1 and (b) technique 2. Numerous nonradiation transitions from upper levels to the metastable 4 I 13/2 manifold are deleted for simplicity.

Fig. 4
Fig. 4

Differential spectra measured by the modulation method. ΔJ fl is the fluorescence signal. ΔJ is the sum of the fluorescence signal and the signal of probe light that results from pump power modulation.

Fig. 5
Fig. 5

Fluorescence spectra of an Er-doped fiber sample for low (P = 1 arbitrary unit) and high (P = 100 arbitrary units) pump power. (One hundred arbitrary units correspond to a laser power of 0.5 W.)

Fig. 6
Fig. 6

Absorption spectrum (k) and its variation (Δk) as a result of changes in pump power (P = 110 arbitrary units).

Fig. 7
Fig. 7

Quantum yield as a function of pump power. Points, experimental data; solid curve, approximation of experimental points with Eq. (9).

Fig. 8
Fig. 8

Experimental C up data for several pump powers.

Fig. 9
Fig. 9

ESA band corresponding to the 4 I 13/24 I 7/2 transition.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Wup=Cupn2,
W=Cupn2P+τ-1.
q=τR-1/τ-1+Cupn2P,
qP/q0=τ-1/τ-1+Cupn2P,
Cup=q0/qP-1/τn2P.
pP/q0  1,  P  0.
n2P=ΔkP/σef.
αP-n2/τ-Cupn22=0,
qA/q0=2/AA+11/2-1,
Cup = A + 11/2 - 1/2τn2,
A=4τ2CupαP.
Δk=σΔn1+σn2,
n2=Δk/2σ.
Δkλ=1/L lnIp/Iu,
Δk=ΔJ-ΔJfl/LJ=n2σ4I13/2 4F7/2,

Metrics