Abstract

We report on reflection gratings produced entirely of dielectric materials. This gives the opportunity to enhance the laser damage threshold over that occurring in conventional metal gratings used for chirped-pulse-amplification, high-power lasers. The design of the system combines a dielectric mirror and a well-defined corrugated top layer to obtain optimum results. The rules that have to be considered for the design optimization are described. We optimized the parameters of a dielectric grating with a binary structure and theoretically obtained 100% reflectivity for the -1 order in the Littrow mounting for a 45° angle of incidence. Subsequently we fabricated gratings by structuring a low-refractive-index top layer of a multilayer stack with electron-beam lithography. The multilayer system was fabricated by conventional sputtering techniques onto a flat fused-silica substrate. The parameters of the device were measured and controlled by light scatterometer equipment. We measured 97% diffraction efficiency in the -1 order and damage thresholds of 4.4 and 0.18 J/cm2 with 5-ns and 1-ps laser pulses, respectively, at a wavelength of 532 nm in working conditions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [CrossRef] [PubMed]
  3. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser application,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  4. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).
  5. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
    [CrossRef]
  6. M. D. Perry, R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, C. Shannon, E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [CrossRef] [PubMed]
  7. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
    [CrossRef]
  8. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
    [CrossRef]
  9. C. Wächter, K. Hehl, “General treatment of slab waveguides including lossy materials and arbitrary refractive-index profiles,” Phys. Status Solidi A 102, 835–842 (1987).
    [CrossRef]
  10. B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
    [CrossRef]
  11. L. Leine, Institut für Festkörpertheorie und Theoretische Optik, Friedrich- Schiller-Univeristät Jena, D-07745 Jena, Germany (personal communication, 1997).
  12. J. Bischoff, K. Hehl, “Matrix formalism for the diffraction computation on a one-dimensional grating consisting of arbitrary layer stacks,” submitted to J. Opt. Soc. Am. A (1999).
  13. L. Li, J. Hirsh, “All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,” Opt. Lett. 20, 1349–1351 (1995).
    [CrossRef] [PubMed]
  14. J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
    [CrossRef]
  15. B. Cannon, T. S. Gardner, D. K. Cohen, “Measurement of 1-µm diam beams,” Appl. Opt. 25, 2981–2983 (1986).
    [CrossRef]
  16. E. Welsch, “Absorption measurements,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995).
  17. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
    [CrossRef]
  18. M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. 8, 338–343 (1972).
    [CrossRef]
  19. S. Szatmari, F. P. Schäfer, “Simplified laser system for the generation of 60-fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
    [CrossRef]
  20. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  21. D. von der Linde, H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
    [CrossRef]

1997 (1)

1996 (1)

1995 (4)

1994 (2)

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

1993 (1)

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

1991 (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

1988 (1)

S. Szatmari, F. P. Schäfer, “Simplified laser system for the generation of 60-fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[CrossRef]

1987 (1)

C. Wächter, K. Hehl, “General treatment of slab waveguides including lossy materials and arbitrary refractive-index profiles,” Phys. Status Solidi A 102, 835–842 (1987).
[CrossRef]

1986 (1)

1985 (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1972 (1)

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. 8, 338–343 (1972).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. 8, 338–343 (1972).
[CrossRef]

Bass, M.

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. 8, 338–343 (1972).
[CrossRef]

Bischoff, J.

J. Bischoff, K. Hehl, “Matrix formalism for the diffraction computation on a one-dimensional grating consisting of arbitrary layer stacks,” submitted to J. Opt. Soc. Am. A (1999).

Boyd, R. D.

Britten, J. A.

Cannon, B.

Chow, R.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
[CrossRef]

Cohen, D. K.

Czarnetzki, N.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Decker, D. E.

Feit, M. D.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

Gardner, T. S.

Götz, B.

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

Hehl, K.

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

C. Wächter, K. Hehl, “General treatment of slab waveguides including lossy materials and arbitrary refractive-index profiles,” Phys. Status Solidi A 102, 835–842 (1987).
[CrossRef]

J. Bischoff, K. Hehl, “Matrix formalism for the diffraction computation on a one-dimensional grating consisting of arbitrary layer stacks,” submitted to J. Opt. Soc. Am. A (1999).

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

Hirsh, J.

Karthe, W.

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

Leine, L.

L. Leine, Institut für Festkörpertheorie und Theoretische Optik, Friedrich- Schiller-Univeristät Jena, D-07745 Jena, Germany (personal communication, 1997).

Li, L.

Loomis, G. E.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
[CrossRef]

Martin, B.

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

Mourou, G.

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Neubert, J.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Nguyen, H. T.

Perry, M. D.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

M. D. Perry, R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, C. Shannon, E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser application,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

Schäfer, F. P.

S. Szatmari, F. P. Schäfer, “Simplified laser system for the generation of 60-fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[CrossRef]

Schüler, H.

Seifert, T.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Shannon, C.

Shore, B. W.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser application,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

M. D. Perry, R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, C. Shannon, E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
[CrossRef]

Shults, E.

Strickland, D.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Stuart, B. C.

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser application,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

Svakhin, A. S.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Sychugov, V. A.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Szatmari, S.

S. Szatmari, F. P. Schäfer, “Simplified laser system for the generation of 60-fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[CrossRef]

Tikhomirov, A. E.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

von der Linde, D.

Wächter, C.

C. Wächter, K. Hehl, “General treatment of slab waveguides including lossy materials and arbitrary refractive-index profiles,” Phys. Status Solidi A 102, 835–842 (1987).
[CrossRef]

Weigel, T.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Welsch, E.

E. Welsch, “Absorption measurements,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. 8, 338–343 (1972).
[CrossRef]

J. Lightwave Technol. (1)

B. Götz, K. Hehl, W. Karthe, B. Martin, “Energy loss in a planar waveguide caused by a high refracting and absorbing overlay,” J. Lightwave Technol. 11, 1447–1452 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

S. Szatmari, F. P. Schäfer, “Simplified laser system for the generation of 60-fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

C. Wächter, K. Hehl, “General treatment of slab waveguides including lossy materials and arbitrary refractive-index profiles,” Phys. Status Solidi A 102, 835–842 (1987).
[CrossRef]

Quantum Electron. (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Science (1)

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys. (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Other (6)

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, “High-efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 511–520 (1996).
[CrossRef]

E. Welsch, “Absorption measurements,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995).

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Ultrashort-pulse optical damage,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. K. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 616–627 (1996); B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
[CrossRef]

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

L. Leine, Institut für Festkörpertheorie und Theoretische Optik, Friedrich- Schiller-Univeristät Jena, D-07745 Jena, Germany (personal communication, 1997).

J. Bischoff, K. Hehl, “Matrix formalism for the diffraction computation on a one-dimensional grating consisting of arbitrary layer stacks,” submitted to J. Opt. Soc. Am. A (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Grating-index change Δβ normalized to the refractive index n 0 of the superstrate as a function of the effective index β0/n 0 of the incident light. The ratio β0/n 0 = sin Θ0 is simply the sinus of the angle of incidence, and the index change is given by Δβ = λ/p, where λ is the wavelength and p is the grating period. The values of the abscissa are in the 0 < β0/n 0 < 1 range, while for the ordinate 0 < Δβ/n 0 < 2. For this example the values for the refractive indices are n s = 1.46 for the substrate and n 0 = 1.0 for the superstrate. Below line A-1 the reflected -1 order is radiating, while above lines M+1 and M-2 the transmitted +1 and -2 orders are evanescent. The optimum area for the working condition is marked by the gray area.

Fig. 2
Fig. 2

Upper right: refractive-index profile of the flat layer system as a function of depth in the layer stack beyond the corrugated top layer. The profile results from an optimized (1H 1L)10 1L system enlarging the angular region of total reflection for TM polarization. The excitation conditions for the grating with a period, p = 380 nm and λ/p = 1.4 for λ = 532 nm, are characterized by the effective index regions 0 < β0 < 1 with n 0 = 1 for the different Rayleigh diffraction modes, β m = β0 + mλ/p. To control the negative index modes in the same way, the negative profile image is also included in the lower right.

Fig. 3
Fig. 3

Comparison of the experimental and the calculated reflection curves of the optimized multilayer mirror for TM polarization. The corresponding index profile is shown in Fig. 2.

Fig. 4
Fig. 4

Effective reflectivity of the mirror versus angle of incidence for the excitation with a superstrate n 0 = 3 for both polarizations. The mirror design that corresponds to Fig. 2 includes an artificial weak absorption in the sixth H layer to enable visualizing waveguide modes in reflection.

Fig. 5
Fig. 5

(a) Comparison of the reflection curve from Fig. 4 for TE polarization in resonance region 1 < β0 < 2 with the different complex eigenmodes β M described in the text in more detail. The upper modes (squares) correspond to the superstrate with n 0 = 3 and the lower modes (triangles) to the air case n 0 = 1. (b) Same calculation for TM polarization.

Fig. 6
Fig. 6

(a) Angular dependence of the calculated phase of the reflected TE light for the excitation with a superstrate n 0 = 3. In contrast to Fig. 4 we assumed for this calculation there is no absorption. (b) The difference phase value of successive points from (a) is plotted versus Θ0. (c) Phase of the reflected TM light. (d) Phase difference for TM polarization.

Fig. 7
Fig. 7

SEM image of the dielectric grating.

Fig. 8
Fig. 8

Principal setup of the scattering measurement in the Littrow mounting.

Fig. 9
Fig. 9

Measured light scattering yield (dots) versus detection angle Θ d relative to the surface normal. The angle of incidence under the so-called classical mounting condition is Θ0 = 45° and therefore near Littrow angle ΘLitt = 44.7°. The predicted values β0 and β-1 are indicated by squares. Weak ghost lines of a superperiod P = 6p are marked by triangles.

Fig. 10
Fig. 10

(a) Measured efficiency of the reflected 0 order as a function of Θ0 for TE polarization (dotted curve). In comparison, the solid curve shows the predicted values from the optimization process. (b) Measured efficiency and calculation of the reflected -1 order for TE. (c) Loss function defined as the residual part of light that is not contained in the reflected 0 and -1 orders for TE. (d) Efficiency of the 0 order for TM polarization. (e) Efficiency of the -1 order for TM polarization. (f) Loss function for TM.

Fig. 11
Fig. 11

(a) Reflection coefficients of the different orders, m = -2, -1, 0, +1, for TE polarization obtained from Fig. 4 and from using β m = n 0 sin Θ0 + mλ/p, assuming a superstrate n 0 = 3. (b) Reflection coefficients for TM polarization.

Fig. 12
Fig. 12

Comparison of the measured efficiencies and an improved theoretical model, Theory (2), which corresponds to the optimized groove profile shown in Fig. 13. Theory (3) includes an additional weak absorption in the sixth H layer. (a) Measured efficiency and calculation of the reflected 0 order as a function of Θ0 for TE polarization. (b) Measured efficiency of the reflected -1 order for TE polarization. (c) The loss function for TE polarization. (d) Efficiency of the 0 order for TM polarization. (e) Efficiency of the -1 order for TM polarization. (f) TM loss function.

Fig. 13
Fig. 13

Comparison of the predicted groove profile and an optimized profile obtained by fitting the experimental curves in Fig. 10 around the Littrow condition.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

βm=n0 sin Θm, β0=n0 sin Θ0, βm=β0+mΔβ, m=0, ±1, ±2,,
Δβ<n0+β0.
Δβ=2β0.
Δβ>n-β0.
Δβ>12n+β0
Δβmin=23 n,
Δβopt=n+n02,
βM=β+1=β0+1+Δβ,
βM=-β-2=-β0-2+2Δβ.
β0+1+β0-2=Δβ.

Metrics