Abstract

We report a detailed investigation of nonresonant laser-induced thermal acoustics (LITA) for the single-shot measurement of the speed of sound (v S) in an oven containing room air. A model for the speed of sound that includes important acoustic relaxation effects is used to convert the speed of sound into temperature. A reference LITA channel is used to reduce uncertainties in v S. Comparing thermocouple temperatures with temperatures deduced from our v S measurements and model, we find the mean temperature difference from 300 to 650 K to be 1% (±2σ). The advantages of using a reference LITA channel are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  2. P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.
  3. T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
    [CrossRef] [PubMed]
  4. E. B. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [CrossRef] [PubMed]
  5. H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  6. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
    [CrossRef] [PubMed]
  7. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
    [CrossRef] [PubMed]
  8. W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
    [CrossRef]
  9. M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).
  10. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
    [CrossRef]
  11. E. B. Cummings, I. A. Leyva, H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34, 3290–3302 (1995).
    [CrossRef] [PubMed]
  12. P. H. Paul, R. L. Farrow, P. M. Danehy, “Gas-phase thermal-grating contributions to four-wave mixing,” J. Opt. Soc. Am. B 12, 384–392 (1995).
    [CrossRef]
  13. E. B. Cummings, “Laser induced thermal acoustics,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1995).
  14. S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), Chap. 11.
  15. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  16. F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
    [CrossRef]
  17. M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
    [CrossRef] [PubMed]
  18. S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
    [CrossRef]
  19. P. Snowden, S. M. Skippon, P. Ewart, “Improved precision of single-shot temperature measurements by broadband CARS by use of a modeless laser,” Appl. Opt. 30, 1008–1010 (1991).
    [CrossRef]
  20. A. C. Eckbreth, “Coherent laser diagnostics for temperature/species measurements in advanced engines,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 399–438.
  21. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), Chap. 5.
  22. H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.
  23. K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).
  24. A. J. Zuckerwar, “Speed of sound in real gases. I. Theory,” J. Acoust. Soc. Am. 100, 2747 (1996).
  25. W. van Dael, A. van Itterbeek, “Velocity of sound in dense fluids,” in Physics of High Pressures and the Condensed Phase, A. van Itterbeek, ed. (North-Holland, Amsterdam, 1965), Chap. 7.
  26. A. B. Bahtia, Ultrasonic Absorption (Dover, New York, 1967).
  27. H.-J. Bauer, “Theory of relaxation phenomena in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 2.
  28. H. O. Kneser, “Relaxation processes in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 3.
  29. R. T. Beyer, S. V. Letcher, Physical Ultrasonics (Academic, New York, 1969).
  30. M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31, 155–161 (1959).
    [CrossRef]
  31. G. S. K. Wong, “Speed of sound in standard air,” J. Acoust. Soc. Am. 79, 1359–1366 (1986).
    [CrossRef]
  32. M. Greenspan, “Comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 370–372 (1987).
    [CrossRef]
  33. G. S. K. Wong, “Response to comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 373–374 (1987).
    [CrossRef]
  34. G. P. Howell, C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
    [CrossRef]
  35. G. S. K. Wong, “Response to frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 376–377 (1987).
    [CrossRef]
  36. J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).
  37. O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration,” J. Acoust. Soc. Am. 93, 2510–2516 (1993).
    [CrossRef]
  38. Y. S. Touloukian, T. Makita, “Specific heat, nonmetallic liquids and gases,” in Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 6.
  39. L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).
  40. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green, New York, 1986).
  41. J. H. Dymond, E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon, Oxford, UK, 1980).
  42. A. J. Zuckerwar, R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
    [CrossRef]
  43. B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).
  44. H. E. Bass, “Absorption of sound by air: high temperature predictions,” J. Acoust. Soc. Am. 69, 124–138 (1981).
    [CrossRef]
  45. H. E. Bass, L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
    [CrossRef]
  46. T. G. Winter, G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).
    [CrossRef]

1999 (1)

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).

1998 (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
[CrossRef]

1996 (2)

1995 (5)

1994 (1)

1993 (2)

O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration,” J. Acoust. Soc. Am. 93, 2510–2516 (1993).
[CrossRef]

B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).

1991 (1)

1990 (3)

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (4)

M. Greenspan, “Comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 370–372 (1987).
[CrossRef]

G. S. K. Wong, “Response to comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 373–374 (1987).
[CrossRef]

G. P. Howell, C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
[CrossRef]

G. S. K. Wong, “Response to frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 376–377 (1987).
[CrossRef]

1986 (1)

G. S. K. Wong, “Speed of sound in standard air,” J. Acoust. Soc. Am. 79, 1359–1366 (1986).
[CrossRef]

1985 (1)

A. J. Zuckerwar, R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
[CrossRef]

1981 (1)

H. E. Bass, “Absorption of sound by air: high temperature predictions,” J. Acoust. Soc. Am. 69, 124–138 (1981).
[CrossRef]

1976 (1)

H. E. Bass, L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
[CrossRef]

1967 (1)

T. G. Winter, G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).
[CrossRef]

1959 (1)

M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31, 155–161 (1959).
[CrossRef]

Alcock, C. B.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).

Alden, M.

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Bahtia, A. B.

A. B. Bahtia, Ultrasonic Absorption (Dover, New York, 1967).

Baker, C. A.

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

Bass, H. E.

H. E. Bass, “Absorption of sound by air: high temperature predictions,” J. Acoust. Soc. Am. 69, 124–138 (1981).
[CrossRef]

H. E. Bass, L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
[CrossRef]

H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.

Bauer, H.-J.

H.-J. Bauer, “Theory of relaxation phenomena in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 2.

Beckett, C. W.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Benedict, W. S.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Bengtsson, P.-E.

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Beyer, R. T.

R. T. Beyer, S. V. Letcher, Physical Ultrasonics (Academic, New York, 1969).

Brown, M. S.

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).

E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
[CrossRef] [PubMed]

Cramer, O.

O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration,” J. Acoust. Soc. Am. 93, 2510–2516 (1993).
[CrossRef]

Cummings, E. B.

Danehy, P. M.

DeBarber, P. A.

Dreier, T.

Dymond, J. H.

J. H. Dymond, E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon, Oxford, UK, 1980).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

A. C. Eckbreth, “Coherent laser diagnostics for temperature/species measurements in advanced engines,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 399–438.

Edner, H.

Eichler, H. J.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Evans, L.

H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.

Ewart, P.

P. Snowden, S. M. Skippon, P. Ewart, “Improved precision of single-shot temperature measurements by broadband CARS by use of a modeless laser,” Appl. Opt. 30, 1008–1010 (1991).
[CrossRef]

P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.

Fano, L.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Farrow, R. L.

Gordon, S.

B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).

Greenhalgh, D. A.

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), Chap. 5.

Greenspan, M.

M. Greenspan, “Comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 370–372 (1987).
[CrossRef]

M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31, 155–161 (1959).
[CrossRef]

Gunter, P.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Gurvich, L. V.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

Herzfeld, K. F.

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

Hill, G. L.

T. G. Winter, G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).
[CrossRef]

Hilsenrath, J.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Hoge, H. J.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Hornung, H. G.

Howell, G. P.

G. P. Howell, C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
[CrossRef]

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

Kaczmarek, M.

P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.

Kaye, G. W. C.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green, New York, 1986).

Kneser, H. O.

H. O. Kneser, “Relaxation processes in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 3.

Kroll, S.

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Laby, T. H.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green, New York, 1986).

Leipertz, A.

Letcher, S. V.

R. T. Beyer, S. V. Letcher, Physical Ultrasonics (Academic, New York, 1969).

Leyva, I. A.

Litovitz, T. A.

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

Makita, T.

Y. S. Touloukian, T. Makita, “Specific heat, nonmetallic liquids and gases,” in Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 6.

Marple, S. L.

S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), Chap. 11.

Masi, J. F.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

McBride, B. J.

B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).

Meredith, R. W.

A. J. Zuckerwar, R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
[CrossRef]

Morfey, C. L.

G. P. Howell, C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
[CrossRef]

Nilsson, D.

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Nuttall, R. L.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Paul, P. H.

Piercy, J.

H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.

Pohl, D. W.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Porter, F. M.

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

Rakestraw, D. J.

Reno, M. A.

B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).

Roberts, W. L.

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).

Seeger, T.

Skippon, S. M.

P. Snowden, S. M. Skippon, P. Ewart, “Improved precision of single-shot temperature measurements by broadband CARS by use of a modeless laser,” Appl. Opt. 30, 1008–1010 (1991).
[CrossRef]

P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.

Smith, E. B.

J. H. Dymond, E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon, Oxford, UK, 1980).

Snowden, P.

Snowdon, P.

P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
[CrossRef]

Stopford, P. J.

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

Sutherland, L. C.

H. E. Bass, L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
[CrossRef]

H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.

Touloukian, Y. S.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Y. S. Touloukian, T. Makita, “Specific heat, nonmetallic liquids and gases,” in Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 6.

van Dael, W.

W. van Dael, A. van Itterbeek, “Velocity of sound in dense fluids,” in Physics of High Pressures and the Condensed Phase, A. van Itterbeek, ed. (North-Holland, Amsterdam, 1965), Chap. 7.

van Itterbeek, A.

W. van Dael, A. van Itterbeek, “Velocity of sound in dense fluids,” in Physics of High Pressures and the Condensed Phase, A. van Itterbeek, ed. (North-Holland, Amsterdam, 1965), Chap. 7.

Veyts, I. V.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).

Williams, D. R.

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

Winter, T. G.

T. G. Winter, G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).
[CrossRef]

Wong, G. S. K.

G. S. K. Wong, “Response to frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 376–377 (1987).
[CrossRef]

G. S. K. Wong, “Response to comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 373–374 (1987).
[CrossRef]

G. S. K. Wong, “Speed of sound in standard air,” J. Acoust. Soc. Am. 79, 1359–1366 (1986).
[CrossRef]

Woolley, H. W.

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

Zuckerwar, A. J.

A. J. Zuckerwar, “Speed of sound in real gases. I. Theory,” J. Acoust. Soc. Am. 100, 2747 (1996).

A. J. Zuckerwar, R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
[CrossRef]

S. Kroll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

Appl. Phys. B. (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
[CrossRef]

J. Acoust. Soc. Am. (12)

A. J. Zuckerwar, R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
[CrossRef]

O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration,” J. Acoust. Soc. Am. 93, 2510–2516 (1993).
[CrossRef]

H. E. Bass, “Absorption of sound by air: high temperature predictions,” J. Acoust. Soc. Am. 69, 124–138 (1981).
[CrossRef]

H. E. Bass, L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
[CrossRef]

T. G. Winter, G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).
[CrossRef]

A. J. Zuckerwar, “Speed of sound in real gases. I. Theory,” J. Acoust. Soc. Am. 100, 2747 (1996).

M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31, 155–161 (1959).
[CrossRef]

G. S. K. Wong, “Speed of sound in standard air,” J. Acoust. Soc. Am. 79, 1359–1366 (1986).
[CrossRef]

M. Greenspan, “Comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 370–372 (1987).
[CrossRef]

G. S. K. Wong, “Response to comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 373–374 (1987).
[CrossRef]

G. P. Howell, C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
[CrossRef]

G. S. K. Wong, “Response to frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 376–377 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Propulsion Power (1)

M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).

NASA Tech. Mem. 4513 (1)

B. J. McBride, S. Gordon, M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).

Opt. Lett. (3)

Phys. Rev. A (1)

A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
[CrossRef] [PubMed]

Other (19)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

P. Snowdon, S. M. Skippon, M. Kaczmarek, P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.

H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

A. C. Eckbreth, “Coherent laser diagnostics for temperature/species measurements in advanced engines,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 399–438.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), Chap. 5.

H. E. Bass, L. C. Sutherland, J. Piercy, L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.

K. F. Herzfeld, T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).

J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ.564 (U.S. GPO, Washington, D.C., 1955).

W. van Dael, A. van Itterbeek, “Velocity of sound in dense fluids,” in Physics of High Pressures and the Condensed Phase, A. van Itterbeek, ed. (North-Holland, Amsterdam, 1965), Chap. 7.

A. B. Bahtia, Ultrasonic Absorption (Dover, New York, 1967).

H.-J. Bauer, “Theory of relaxation phenomena in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 2.

H. O. Kneser, “Relaxation processes in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 3.

R. T. Beyer, S. V. Letcher, Physical Ultrasonics (Academic, New York, 1969).

E. B. Cummings, “Laser induced thermal acoustics,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1995).

S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), Chap. 11.

Y. S. Touloukian, T. Makita, “Specific heat, nonmetallic liquids and gases,” in Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 6.

L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green, New York, 1986).

J. H. Dymond, E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon, Oxford, UK, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup. BS, beam splitter; HPC, high-pressure cell; PD, photodiode; FOC, fiber-optic cable; PMT, photomultiplier tube; L1, L2, and L3, lenses.

Fig. 2
Fig. 2

Interior configuration of the oven. TC, thermocouple; VC, vacuum cell.

Fig. 3
Fig. 3

Single-shot LITA waveforms at 295 and 652 K (diamonds) and Pronys method fit (curve).

Fig. 4
Fig. 4

Power spectra from least-squares Pronys method fit to single-shot LITA data at 295 and 652 K. The frequency of the spectral peak is proportional to v S and thus approximately proportional to T.

Fig. 5
Fig. 5

Histogram of f LITAv S for 90 shots at 295 K.

Fig. 6
Fig. 6

LITA thermometry with the reference cell. (a) T LITA versus T TC. Each data point is the average of 80–100 shots. (b) Percent difference versus T TC for each of the data points in (a). The average difference is 0.02%, whereas the standard deviation of the percentage differences is 0.5%.

Fig. 7
Fig. 7

LITA thermometry without the reference cell. The format is the same as in Fig. 6. The average difference is 0.06%, whereas the standard deviation is 0.7%.

Fig. 8
Fig. 8

Single-shot σ T versus T TC with and without the reference cell; each point represents a sample of 80–100 shots.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

vS2fS, T, P=v021+KCT1+KVT, P×1+KRfS, T, P,
F=1RT2B+2γ0-1T BT+γ0-12γ02 T22BT2,
G=-BFRT+γ0-1γ0RT2B+2γ0-1T BT+γ0-1T22BT22+1+2γ0γ0 C+γ02-1γ0 T CT+γ0-122γ0 T22CT2.
α=12vv02  ω2τ1+ω2τ2,
v02v2=1- ω2τ21+ω2τ2,
ciR=θν/T2 exp-θν/T1-exp-θν/T2,
α=ω22γ0Pv04η3+γ0-1κγ0cv0,
κ=15Rη44cv015R+35

Metrics