Abstract

Analytic expressions are presented for the fluence dependence of the populations of pulse-excited singlet and triplet states of metallo-organic molecules appropriate for the design of passive optical limiters in which the molecular density profile along the axis of a convergent beam is graded to avoid damage at high design fluences. The original model was relevant strictly for laser-pulse lengths greater than 10-7 s. This research extends the model to the range from 10-11 to 10-6 s and beyond. The factors that determine the appropriate concentration profiles, and the high-fluence performance of the device, are also reviewed.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bottleneck optical limiters: the optimal use of excited-state absorbers

Perry A. Miles
Appl. Opt. 33(30) 6965-6979 (1994)

Optimization of optical limiting devices based on excited-state absorption

Tiejun Xia, David J. Hagan, Arthur Dogariu, Ali A. Said, and Eric W. Van Stryland
Appl. Opt. 36(18) 4110-4122 (1997)

Modeling of picosecond-pulse propagation for optical limiting applications in the visible spectrum

S. Hughes, J. M. Burzler, and T. Kobayashi
J. Opt. Soc. Am. B 14(11) 2925-2929 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription