Abstract

An algorithm was developed that uses prototype spectra and least-squares minimization to unmix the relative contributions of individual pigments to the composite fluorescence emission spectrum of reef corals. Field measurements indicated that it was necessary to include allowance for spectral shift of the wavelength peak of the prototype emission spectra. The unmixed spectra are used to predict the shape and amplitude of composite spectra that would be expected under different excitation conditions. We found that, for cases in which the pigments occur singly or with significant spectral separation, it is necessary to consider the properties of the excitation light sources, only, to make accurate predictions. In cases with spectral overlap the contribution of interpigment coupling cannot be neglected.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).
  2. T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
    [CrossRef]
  3. J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
    [CrossRef]
  4. J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
    [CrossRef]
  5. S. Kawaguti, “On the physiology of reef corals VI: study on the pigments,” Palao Trop. Biol. Stn. Stud. 2, 617–674 (1944).
  6. R. Catala, “Fluorescence effects from corals irradiated with ultra-violet rays,” Nature (London) 183, 949 (1959).
    [CrossRef]
  7. K. Shibata, “Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef,” Plant Cell Physiol. 10, 325–335 (1969).
  8. P. L. Jokiel, R. H. York, “Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae,” Bull. Mar. Sci. 32, 301–315 (1982).
  9. D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
    [CrossRef]
  10. A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).
  11. L. Delvoye, “Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa),” Stud. Nat. Hist. Caribbean Region 71, 24–41 (1992).
  12. D. F. Gleason, “Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides,” Limnol. Oceanogr. 38, 1452–1463 (1993).
    [CrossRef]
  13. C. Mazel, “Spectral measurements of fluorescence emission in Caribbean cnidarians,” Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
    [CrossRef]
  14. C. Mazel, “Coral fluorescence characteristics: excitation/emission spectra, fluorescence efficiencies, and contribution to apparent reflectance,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 240–245 (1997).
    [CrossRef]
  15. C. Mazel, “Diver-operated instrument for in-situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
    [CrossRef]
  16. M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).
  17. M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).
  18. A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem. 36, 1627–1639 (1964).
    [CrossRef]
  19. G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge Press, Wellesley, Mass., 1986).
  20. J. J. Settele, N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” Int. J. Remote Sensing 14, 1159–1177 (1993).
    [CrossRef]
  21. C. D. Mobley, Light and Water (Academic, San Diego, Calif., 1994).
  22. J. C. Goedheer, “Fluorescence in relation to photosynthesis,” Ann. Rev. Plant Physiol. 23, 87–112 (1972).
    [CrossRef]

1997 (1)

C. Mazel, “Diver-operated instrument for in-situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

1995 (1)

C. Mazel, “Spectral measurements of fluorescence emission in Caribbean cnidarians,” Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
[CrossRef]

1993 (3)

J. J. Settele, N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” Int. J. Remote Sensing 14, 1159–1177 (1993).
[CrossRef]

D. F. Gleason, “Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides,” Limnol. Oceanogr. 38, 1452–1463 (1993).
[CrossRef]

T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
[CrossRef]

1992 (2)

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

L. Delvoye, “Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa),” Stud. Nat. Hist. Caribbean Region 71, 24–41 (1992).

1990 (2)

A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).

J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
[CrossRef]

1986 (1)

D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
[CrossRef]

1982 (1)

P. L. Jokiel, R. H. York, “Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae,” Bull. Mar. Sci. 32, 301–315 (1982).

1972 (1)

J. C. Goedheer, “Fluorescence in relation to photosynthesis,” Ann. Rev. Plant Physiol. 23, 87–112 (1972).
[CrossRef]

1969 (1)

K. Shibata, “Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef,” Plant Cell Physiol. 10, 325–335 (1969).

1966 (1)

C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

1964 (1)

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

1959 (1)

R. Catala, “Fluorescence effects from corals irradiated with ultra-violet rays,” Nature (London) 183, 949 (1959).
[CrossRef]

1944 (1)

S. Kawaguti, “On the physiology of reef corals VI: study on the pigments,” Palao Trop. Biol. Stn. Stud. 2, 617–674 (1944).

Catala, R.

R. Catala, “Fluorescence effects from corals irradiated with ultra-violet rays,” Nature (London) 183, 949 (1959).
[CrossRef]

Coles, B. W.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).

Cowles, T. J.

T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
[CrossRef]

Delvoye, L.

L. Delvoye, “Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa),” Stud. Nat. Hist. Caribbean Region 71, 24–41 (1992).

Desiderio, R. A.

T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
[CrossRef]

Dodge, R.

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

Drake, N. A.

J. J. Settele, N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” Int. J. Remote Sensing 14, 1159–1177 (1993).
[CrossRef]

Dustan, P.

M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).

Fricke, H. W.

D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
[CrossRef]

Gleason, D. F.

D. F. Gleason, “Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides,” Limnol. Oceanogr. 38, 1452–1463 (1993).
[CrossRef]

Goedheer, J. C.

J. C. Goedheer, “Fluorescence in relation to photosynthesis,” Ann. Rev. Plant Physiol. 23, 87–112 (1972).
[CrossRef]

Golay, M. J. E.

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Halcrow, K.

A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).

Hardy, J.

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

Hardy, J. T.

M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).

Hoge, F.

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

Jokiel, P. L.

P. L. Jokiel, R. H. York, “Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae,” Bull. Mar. Sci. 32, 301–315 (1982).

Kawaguti, S.

S. Kawaguti, “On the physiology of reef corals VI: study on the pigments,” Palao Trop. Biol. Stn. Stud. 2, 617–674 (1944).

Korjeff Bellows, K.

J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
[CrossRef]

Logan, A.

A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).

Lorenzen, C. J.

C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

Mazel, C.

C. Mazel, “Diver-operated instrument for in-situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

C. Mazel, “Spectral measurements of fluorescence emission in Caribbean cnidarians,” Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
[CrossRef]

C. Mazel, “Coral fluorescence characteristics: excitation/emission spectra, fluorescence efficiencies, and contribution to apparent reflectance,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 240–245 (1997).
[CrossRef]

Mazel, C. H.

M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).

Mobley, C. D.

C. D. Mobley, Light and Water (Academic, San Diego, Calif., 1994).

Myers, M. R.

M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).

Neuer, S.

T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
[CrossRef]

Nevis, A. J.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).

Regan, R.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).

Savitzky, A.

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Schlichter, D.

D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
[CrossRef]

Settele, J. J.

J. J. Settele, N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” Int. J. Remote Sensing 14, 1159–1177 (1993).
[CrossRef]

Shibata, K.

K. Shibata, “Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef,” Plant Cell Physiol. 10, 325–335 (1969).

Strand, M. P.

M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).

Strang, G.

G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge Press, Wellesley, Mass., 1986).

Tomascik, T.

A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).

Topinka, J. A.

J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
[CrossRef]

Weber, W.

D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
[CrossRef]

Yentch, C. S.

J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
[CrossRef]

York, R. H.

P. L. Jokiel, R. H. York, “Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae,” Bull. Mar. Sci. 32, 301–315 (1982).

Yungel, J.

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

Anal. Chem. (1)

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedure,” Anal. Chem. 36, 1627–1639 (1964).
[CrossRef]

Ann. Rev. Plant Physiol. (1)

J. C. Goedheer, “Fluorescence in relation to photosynthesis,” Ann. Rev. Plant Physiol. 23, 87–112 (1972).
[CrossRef]

Bull. Mar. Sci. (2)

A. Logan, K. Halcrow, T. Tomascik, “UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda,” Bull. Mar. Sci. 46, 807–813 (1990).

P. L. Jokiel, R. H. York, “Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae,” Bull. Mar. Sci. 32, 301–315 (1982).

Deep-Sea Res. (1)

C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

Int. J. Remote Sensing (2)

J. A. Topinka, K. Korjeff Bellows, C. S. Yentch, “Characterization of marine macroalgae by fluorescence signatures,” Int. J. Remote Sensing 11, 2329–2335 (1990).
[CrossRef]

J. J. Settele, N. A. Drake, “Linear mixing and the estimation of ground cover proportions,” Int. J. Remote Sensing 14, 1159–1177 (1993).
[CrossRef]

Limnol. Oceanogr. (1)

D. F. Gleason, “Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides,” Limnol. Oceanogr. 38, 1452–1463 (1993).
[CrossRef]

Mar. Biol. (2)

T. J. Cowles, R. A. Desiderio, S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol. 115, 217–222 (1993).
[CrossRef]

D. Schlichter, H. W. Fricke, W. Weber, “Light harvesting by wavelength transformation in a symbiotic coral in the Red Sea twilight zone,” Mar. Biol. 91, 403–407 (1986).
[CrossRef]

Mar. Ecol. Prog. Ser. (2)

J. Hardy, F. Hoge, J. Yungel, R. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[CrossRef]

C. Mazel, “Spectral measurements of fluorescence emission in Caribbean cnidarians,” Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
[CrossRef]

Nature (London) (1)

R. Catala, “Fluorescence effects from corals irradiated with ultra-violet rays,” Nature (London) 183, 949 (1959).
[CrossRef]

Opt. Eng. (1)

C. Mazel, “Diver-operated instrument for in-situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997).
[CrossRef]

Palao Trop. Biol. Stn. Stud. (1)

S. Kawaguti, “On the physiology of reef corals VI: study on the pigments,” Palao Trop. Biol. Stn. Stud. 2, 617–674 (1944).

Plant Cell Physiol. (1)

K. Shibata, “Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef,” Plant Cell Physiol. 10, 325–335 (1969).

Stud. Nat. Hist. Caribbean Region (1)

L. Delvoye, “Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa),” Stud. Nat. Hist. Caribbean Region 71, 24–41 (1992).

Other (5)

C. Mazel, “Coral fluorescence characteristics: excitation/emission spectra, fluorescence efficiencies, and contribution to apparent reflectance,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 240–245 (1997).
[CrossRef]

M. R. Myers, J. T. Hardy, C. H. Mazel, P. Dustan, “Optical spectra and pigmentation of Caribbean reef corals and macroalgae, Coral Reefs (to be published).

M. P. Strand, B. W. Coles, A. J. Nevis, R. Regan, “Laser line-scan fluorescence and multispectral imaging of coral reef environment,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds., Proc. SPIE2963, 790–795 (1997).

G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge Press, Wellesley, Mass., 1986).

C. D. Mobley, Light and Water (Academic, San Diego, Calif., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Normalized prototype emission spectra.

Fig. 2
Fig. 2

Artificial test case 7 (Table 1, noise level 10% of signal level).

Fig. 3
Fig. 3

Artificial test case in which the number of sample pigments exceeds the number of prototype pigments.

Fig. 4
Fig. 4

Measured and reconstructed spectra for Montastraea cavernosa specimen with 515 pigment only.

Fig. 5
Fig. 5

Measured and reconstructed spectra for Porites astreoides specimen with 515 pigment only. Unmixing result is a combination of 486 and 515 pigments.

Fig. 6
Fig. 6

Measured and reconstructed spectra for Montastraea cavernosa specimen with 486 and 515 pigments.

Fig. 7
Fig. 7

Montastraea annularis specimen with mainly 486 pigment. Sample measured with λex1 = 365 nm and λex2 = 450 nm, compared with signal predicted for 450-nm excitation.

Fig. 8
Fig. 8

Montastraea cavernosa specimen with 515 pigment only. Sample measured with λex1 = 450 nm and λex2 = 488 nm, compared with signal predicted for 488-nm excitation.

Fig. 9
Fig. 9

Montastraea cavernosa specimen with 486 and 515 pigments. Sample measured with λex1 = 365 nm and λex2 = 450 nm, compared with signal predicted for 450-nm excitation.

Fig. 10
Fig. 10

Montastraea cavernosa specimen with 486 and 515 pigments (same as in Fig. 9). Sample measured with λex1 = 450 nm and λex2 = 488 nm, compared with signal predicted for 488-nm excitation.

Fig. 11
Fig. 11

Overlap between the emission spectrum of the 486 pigment and the excitation spectrum of the 515 pigment (both spectra normalized).

Tables (1)

Tables Icon

Table 1 Artificial Data Set Used for Testing the Unmixing Algorithm

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A end members matrix,x coefficient vector,b measured sample vector.
e2=Ax-b2=Ax-bTAx-b.
P=½xTATAx-xTATb.
ATAx=ATb,
x=ATA-1ATb.
EI=λbλ-Aλx2dλ.
ΦFΔλex=λem fλemdλemΔλex ESλexaλexdλex,
λem f2λemdλ=λex2 ESΔλex2aΔλex2dλλex1 ESΔλex1aΔλex1dλλem f1λemdλ,
λem f2λemdλ=Sλex2exλex2Sλex1exλex1λem f1λemdλ,

Metrics