Abstract

The theory of the double-edge lidar technique for measuring the wind with molecular backscatter is described. Two high-spectral-resolution edge filters are located in the wings of the Rayleigh–Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and improves measurement accuracy relative to the single-edge technique by nearly a factor of 2. The use of a crossover region where the sensitivity of a molecular- and an aerosol-based measurement is equal is described. Use of this region desensitizes the molecular measurement to the effects of aerosol scattering over a velocity range of ±100 m/s. We give methods for correcting short-term, shot-to-shot, frequency jitter and drift with a laser reference frequency measurement and methods for long-term frequency correction with a servo control system. The effects of Rayleigh–Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2–3 m/s for altitudes of 2–15 km for a 1-km vertical resolution, a satellite altitude of 400 km, and a 200 km × 200 km spatial resolution.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Korb, B. Gentry, C. Weng, “The edge technique: theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  2. B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  3. C. L. Korb, B. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
    [CrossRef] [PubMed]
  4. V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
    [CrossRef] [PubMed]
  5. V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
    [CrossRef] [PubMed]
  6. M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [CrossRef] [PubMed]
  7. D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
    [CrossRef] [PubMed]
  8. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  9. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  10. W. R. Skinner, P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” , (Marshall Space Flight Center, Huntsville, Ala., 1994).
  11. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef] [PubMed]
  12. A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 18, 1911–1921 (1967).
    [CrossRef]
  13. G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  14. G. Tenti, R. D. Desai, “Kinetic theory of molecular gases I/models of the linear Waldmann–Snider collision operator,” Can. J. Phys. 53, 1266–1278 (1974).
    [CrossRef]
  15. C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
    [CrossRef]
  16. C. L. Korb, B. M. Gentry, S. X. Li, C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37, 3097–3104 (1998).
    [CrossRef]
  17. F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Agnew. Phys. 15, 330–338 (1963).

1998 (1)

1997 (3)

1994 (1)

1992 (3)

1990 (1)

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1979 (1)

1974 (2)

G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

G. Tenti, R. D. Desai, “Kinetic theory of molecular gases I/models of the linear Waldmann–Snider collision operator,” Can. J. Phys. 53, 1266–1278 (1974).
[CrossRef]

1972 (1)

C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

1967 (1)

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 18, 1911–1921 (1967).
[CrossRef]

1963 (1)

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Agnew. Phys. 15, 330–338 (1963).

Abreu, V. J.

Barnes, J. E.

Bayer-Helms, F.

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Agnew. Phys. 15, 330–338 (1963).

Boley, C. D.

G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Bufton, J. L.

Cavanaugh, J. F.

Chanin, M. L.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chudamani, S.

Desai, R. D.

G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

G. Tenti, R. D. Desai, “Kinetic theory of molecular gases I/models of the linear Waldmann–Snider collision operator,” Can. J. Phys. 53, 1266–1278 (1974).
[CrossRef]

C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Flesia, C.

Garnier, A.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gentry, B.

Gentry, B. M.

Hauchecorne, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hays, P. B.

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

W. R. Skinner, P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” , (Marshall Space Flight Center, Huntsville, Ala., 1994).

Irgang, T. D.

Korb, C. L.

Li, S. X.

McDermid, I. S.

McGill, M. J.

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Rees, D.

Skinner, W. R.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

W. R. Skinner, P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” , (Marshall Space Flight Center, Huntsville, Ala., 1994).

Spinhirne, J. D.

Sugawara, A.

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 18, 1911–1921 (1967).
[CrossRef]

Tenti, G.

G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

G. Tenti, R. D. Desai, “Kinetic theory of molecular gases I/models of the linear Waldmann–Snider collision operator,” Can. J. Phys. 53, 1266–1278 (1974).
[CrossRef]

C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Weng, C.

Yip, S.

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 18, 1911–1921 (1967).
[CrossRef]

Appl. Opt. (9)

V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
[CrossRef] [PubMed]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, C. Weng, “The edge technique: theory and application to the lidar measurement of atmospheric winds,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

C. L. Korb, B. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37, 3097–3104 (1998).
[CrossRef]

Appl. Phys. B (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Can. J. Phys. (3)

G. Tenti, C. D. Boley, R. D. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

G. Tenti, R. D. Desai, “Kinetic theory of molecular gases I/models of the linear Waldmann–Snider collision operator,” Can. J. Phys. 53, 1266–1278 (1974).
[CrossRef]

C. D. Boley, R. D. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Phys. Fluids (1)

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 18, 1911–1921 (1967).
[CrossRef]

Z. Agnew. Phys. (1)

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Agnew. Phys. 15, 330–338 (1963).

Other (1)

W. R. Skinner, P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” , (Marshall Space Flight Center, Huntsville, Ala., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Outgoing and backscattered laser signals split by a beam splitter (BS) and a mirror (M) between the two edge detector (EDGE DET) channels, and a small portion of the signal is sent to an energy monitor detector (EM DET).

Fig. 2
Fig. 2

Setup for the double-edge measurement of frequency shifts of the R-B profile with two edge filters at frequencies ν 1 and ν 2.

Fig. 3
Fig. 3

Measurement sensitivity as a function of frequency for Fabry–Perot etalons for various spectral resolutions.

Fig. 4
Fig. 4

Figure of merit for the measurement error for various spectral resolutions as a function of the location of the etalons on the R-B spectrum.

Fig. 5
Fig. 5

Crossover region for the R-B profile at 30.1 km, which is close to a pure Rayleigh profile, for etalons used as edge filters for a spectral resolution, HWHH, of 0.778 GHz.

Fig. 6
Fig. 6

R-B spectra at a wavelength of 355 nm at various temperatures for a pressure of 1000 mbars.

Fig. 7
Fig. 7

R-B spectra at a wavelength of 355 nm at various temperatures for a pressure of 500 mbars.

Fig. 8
Fig. 8

R-B spectra at a wavelength of 355 nm at various temperatures for a pressure of 250 mbars.

Fig. 9
Fig. 9

R-B spectra at a wavelength of 355 nm for various altitude levels.

Fig. 10
Fig. 10

Altitude dependence of the crossover region for the R-B profile for etalons used as edge filters with a spectral resolution of 1.56 GHz.

Fig. 11
Fig. 11

Simulation results for a satellite-based 355-nm double-edge system at 400 km for a 1-J laser energy, a 200 km × 200 km spatial resolution, and a 1-km vertical resolution.

Tables (1)

Tables Icon

Table 1 Satellite Lidar System Simulation Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Δν=2vcν,
I1=a- T1ν-ν1IRν-νl+Δνdν+IAT1νl+Δν-ν1,
I2=a- T2ν-ν2IRν-νl+Δνdν+IAT2νl+Δν-ν2.
Tiν=11+ν-νi/Δνi/22,
R1ν1, νl+Δν=- T1ν-ν1IRν-νl+Δνdν,
R2ν2, νl+Δν=- T2ν-ν2IRν-νl+Δνdν;
I1=aR1ν1, νl+Δν+IAT1νl+Δν-ν1,
I2=aR2ν2, νl+Δν+IAT2νl+Δν-ν2.
I1=aR1ν1, νl+IAT1νl-ν1+ddν R1ν1, νl+IAddν T1νl-ν1Δν,
R1ν1,νl=R1ν1,νl+Δν|Δν=o,  ddν R1ν1, νl=ddν R1ν1, νl+ΔνΔν=o,
I1=aR1ν1, νl+IAT1νl-ν1+ΔνR1ν1, νl×1R1ν1, νlddν R1ν1, νl+IAT1νl-ν11T1νl-ν1ddν T1νl-ν1.
1R1ν1, νlddν R1ν1, νl=1T1νl-ν1ddν T1νl-ν1.
I1=aR1ν1, νl+IAT1νl-ν1×1+ΔνR1ν1, νlddν R1ν1, νl.
I1ν1, νl+Δν=I1ν1, νl1+ΔνR1ν1, νlddν R1ν1, νl.
I2ν2, νl+Δν=I2ν2, νl1+ΔνR2ν2, νlddν R2ν2, νl.
fΔν=I1ν1, νl+ΔνI2ν2, νl+Δν,
fΔν=f01+1R1ν1, νlddν R1ν1, νl-1R2ν2, νlddν R2ν2, νlΔν
fΔν=f01+ϑ1+ϑ2Δν,
ϑ1=1R1ν1, νlddν R1ν1, νl,  ϑ2=-1R2ν2, νlddν R2ν2, νl
Δν=fΔν-f0f0ϑ1+ϑ2
v=c2νfΔν-f0/f0ϑ1+ϑ2.
ε=1ϑ1+ϑ2S/N,
1S/N=1S/N12+1S/N221/2,
f0=I1ν1, νl/I2ν2, νl.
ε=1ϑ1+ϑ2R1V1, Vl.

Metrics