Abstract

Free-space laser communication (lasercom) systems are subject to performance degradation when heavy fog or smoke obscures the line of sight. The bit-error rate (BER) of a high-bandwidth (570 Mbits/s) lasercom system was correlated with the atmospheric transmission over a folded path of 2.4 km. BER’s of 10-7 were observed when the atmospheric transmission was as low as 0.25%, whereas BER’s of less than 10-10 were observed when the transmission was above 2.5%. System performance was approximately 10 dB less than calculated, with the discrepancy attributed to scintillation, multiple scattering, and absorption. Peak power of the 810-nm communications laser was 186 mW, and the beam divergence was purposely degraded to 830 µrad. These results were achieved without the use of error correction schemes or active tracking. An optimized system with narrower beam divergence and active tracking could be expected to yield significantly better performance.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
    [CrossRef]
  2. S. Bloom, E. Korevaar, “Fiber-free laser communications soar to ‘unheard of’ heights,” Photon. Design Solutions 31 (2), 115–120 (1997).
  3. M. Spragg, “Recommendation report for Scout laser communication binoculars FY96 CEP #611” (Mounted Maneuver Battlespace Lab, U.S. Army Armor Center, Fort Knox, Ky., 1997).
  4. E. Korevaar, “Low cost ground terminal for satellite laser communications,” (NASA—Marshall Space Flight Center, Huntsville, Ala., 1996).
  5. T. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” in Free Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. SPIE1417, 484–496 (1991).
    [CrossRef]
  6. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
    [CrossRef]
  7. S. Bloom, V. Chan, C. S. Liu, “High-elevation terrestrial validation of BMDO lasercom system at 1.1 Gbit/s,” in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE2381, 113–128 (1995).
    [CrossRef]
  8. V. Chan, S. Bloom, “Results of 150 km, 1 Gbps lasercom validation experiment using aircraft motion simulator,” in Free-Space Laser Communication Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 60–70 (1996).
    [CrossRef]
  9. V. Chan, R. Arnold, “Results of 1 Gbps aircraft to ground lasercom validation demonstration,” in Free-Space Laser Communications Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 52–59 (1997).
    [CrossRef]
  10. H. Gamo, N. Jagannathan, A. K. Majumdar, “Comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence,” in Advances in Laser Technology for the Atmospheric Sciences, J. Torlinger, W. W. Moore, eds., Proc. SPIE125, 30–33 (1977).
    [CrossRef]
  11. F. G. Smith, ed., “Atmospheric propagation of radiation,” in The Infrared & Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, exec. eds. (SPIE Optical Engineering Press, Bellingham, Wash., 1993), Vol. 2, pp. 92–127.
  12. J. E. Jiusto, “Fog structure,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), pp. 187–239.
    [CrossRef]
  13. I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
    [CrossRef]
  14. I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).
  15. W. K. Pratt, Laser Communications Systems (Wiley, New York, 1969).
  16. M. Bass, ed., Handbook of Optics, Fundamentals, Techniques, & Design (McGraw-Hill, New York, 1995).
  17. A. K. Majumdar, “Optical communication between aircraft in low-visibility atmosphere using diode lasers,” Appl. Opt. 24, 3659–3665 (1985).
    [CrossRef] [PubMed]
  18. M. Katzman, ed., Laser Satellite Communications (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  19. S. G. Lambert, W. L. Casey, Laser Communications in Space (Artech, Boston, Mass., 1995).
  20. R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).
  21. M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1990).

1997

S. Bloom, E. Korevaar, “Fiber-free laser communications soar to ‘unheard of’ heights,” Photon. Design Solutions 31 (2), 115–120 (1997).

1985

Adhikari, P.

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Arnold, R.

V. Chan, R. Arnold, “Results of 1 Gbps aircraft to ground lasercom validation demonstration,” in Free-Space Laser Communications Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 52–59 (1997).
[CrossRef]

Barclay, M.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Bloom, S.

S. Bloom, E. Korevaar, “Fiber-free laser communications soar to ‘unheard of’ heights,” Photon. Design Solutions 31 (2), 115–120 (1997).

S. Bloom, V. Chan, C. S. Liu, “High-elevation terrestrial validation of BMDO lasercom system at 1.1 Gbit/s,” in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE2381, 113–128 (1995).
[CrossRef]

V. Chan, S. Bloom, “Results of 150 km, 1 Gbps lasercom validation experiment using aircraft motion simulator,” in Free-Space Laser Communication Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 60–70 (1996).
[CrossRef]

Casey, W. L.

S. G. Lambert, W. L. Casey, Laser Communications in Space (Artech, Boston, Mass., 1995).

Chan, V.

V. Chan, R. Arnold, “Results of 1 Gbps aircraft to ground lasercom validation demonstration,” in Free-Space Laser Communications Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 52–59 (1997).
[CrossRef]

S. Bloom, V. Chan, C. S. Liu, “High-elevation terrestrial validation of BMDO lasercom system at 1.1 Gbit/s,” in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE2381, 113–128 (1995).
[CrossRef]

V. Chan, S. Bloom, “Results of 150 km, 1 Gbps lasercom validation experiment using aircraft motion simulator,” in Free-Space Laser Communication Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 60–70 (1996).
[CrossRef]

Chan, V. J.

I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
[CrossRef]

Fletcher, L.

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

Gamo, H.

H. Gamo, N. Jagannathan, A. K. Majumdar, “Comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence,” in Advances in Laser Technology for the Atmospheric Sciences, J. Torlinger, W. W. Moore, eds., Proc. SPIE125, 30–33 (1977).
[CrossRef]

Grotzinger, T.

T. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” in Free Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. SPIE1417, 484–496 (1991).
[CrossRef]

Hakakha, H.

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Jagannathan, N.

H. Gamo, N. Jagannathan, A. K. Majumdar, “Comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence,” in Advances in Laser Technology for the Atmospheric Sciences, J. Torlinger, W. W. Moore, eds., Proc. SPIE125, 30–33 (1977).
[CrossRef]

Jiusto, J. E.

J. E. Jiusto, “Fog structure,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), pp. 187–239.
[CrossRef]

Kim, I.

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

Kim, I. I.

I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Kingston, R. H.

R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).

Koontz, J.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Korevaar, E.

S. Bloom, E. Korevaar, “Fiber-free laser communications soar to ‘unheard of’ heights,” Photon. Design Solutions 31 (2), 115–120 (1997).

E. Korevaar, “Low cost ground terminal for satellite laser communications,” (NASA—Marshall Space Flight Center, Huntsville, Ala., 1996).

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Lambert, S. G.

S. G. Lambert, W. L. Casey, Laser Communications in Space (Artech, Boston, Mass., 1995).

Liu, C. S.

S. Bloom, V. Chan, C. S. Liu, “High-elevation terrestrial validation of BMDO lasercom system at 1.1 Gbit/s,” in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE2381, 113–128 (1995).
[CrossRef]

Majumdar, A. K.

A. K. Majumdar, “Optical communication between aircraft in low-visibility atmosphere using diode lasers,” Appl. Opt. 24, 3659–3665 (1985).
[CrossRef] [PubMed]

H. Gamo, N. Jagannathan, A. K. Majumdar, “Comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence,” in Advances in Laser Technology for the Atmospheric Sciences, J. Torlinger, W. W. Moore, eds., Proc. SPIE125, 30–33 (1977).
[CrossRef]

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

Moursund, C.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Pratt, W. K.

W. K. Pratt, Laser Communications Systems (Wiley, New York, 1969).

Riley, B.

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

Ruigrok, R.

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Schuster, J.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

Schwartz, M.

M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1990).

Spragg, M.

M. Spragg, “Recommendation report for Scout laser communication binoculars FY96 CEP #611” (Mounted Maneuver Battlespace Lab, U.S. Army Armor Center, Fort Knox, Ky., 1997).

Stanford, A.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

Stieger, R.

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

Strickland, B. R.

I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
[CrossRef]

Woodbridge, E. L.

I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
[CrossRef]

Appl. Opt.

Photon. Design Solutions

S. Bloom, E. Korevaar, “Fiber-free laser communications soar to ‘unheard of’ heights,” Photon. Design Solutions 31 (2), 115–120 (1997).

Other

M. Spragg, “Recommendation report for Scout laser communication binoculars FY96 CEP #611” (Mounted Maneuver Battlespace Lab, U.S. Army Armor Center, Fort Knox, Ky., 1997).

E. Korevaar, “Low cost ground terminal for satellite laser communications,” (NASA—Marshall Space Flight Center, Huntsville, Ala., 1996).

T. Grotzinger, “The effects of atmospheric conditions on the performance of free-space infrared communications,” in Free Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. SPIE1417, 484–496 (1991).
[CrossRef]

I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, A. K. Majumdar, “Scintillation reduction using multiple transmitters,” in Free-Space Laser Communication Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 102–113 (1997).
[CrossRef]

S. Bloom, V. Chan, C. S. Liu, “High-elevation terrestrial validation of BMDO lasercom system at 1.1 Gbit/s,” in Free-Space Laser Communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE2381, 113–128 (1995).
[CrossRef]

V. Chan, S. Bloom, “Results of 150 km, 1 Gbps lasercom validation experiment using aircraft motion simulator,” in Free-Space Laser Communication Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 60–70 (1996).
[CrossRef]

V. Chan, R. Arnold, “Results of 1 Gbps aircraft to ground lasercom validation demonstration,” in Free-Space Laser Communications Technologies IX, G. S. Mercherle, ed., Proc. SPIE2990, 52–59 (1997).
[CrossRef]

H. Gamo, N. Jagannathan, A. K. Majumdar, “Comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence,” in Advances in Laser Technology for the Atmospheric Sciences, J. Torlinger, W. W. Moore, eds., Proc. SPIE125, 30–33 (1977).
[CrossRef]

F. G. Smith, ed., “Atmospheric propagation of radiation,” in The Infrared & Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, exec. eds. (SPIE Optical Engineering Press, Bellingham, Wash., 1993), Vol. 2, pp. 92–127.

J. E. Jiusto, “Fog structure,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), pp. 187–239.
[CrossRef]

I. I. Kim, E. L. Woodbridge, V. J. Chan, B. R. Strickland, “Scintillation measurements performed during the limited-visibility lasercom experiment,” in Free-Space Laser Communications Technologies X, G. S. Mecherle, ed., Proc. SPIE3266, 209–220 (1998).
[CrossRef]

I. I. Kim, J. Koontz, H. Hakakha, P. Adhikari, R. Stieger, C. Moursund, M. Barclay, A. Stanford, R. Ruigrok, J. Schuster, E. Korevaar, “Measurement of scintillation and link margin for the TeraLink laser communication system,” in Wireless Technologies and Systems: Millimeter Wave and Optical, P. Christopher, L. Langston, G. Mecherle, eds., Proc. SPIE3232, 100–118 (1998).

W. K. Pratt, Laser Communications Systems (Wiley, New York, 1969).

M. Bass, ed., Handbook of Optics, Fundamentals, Techniques, & Design (McGraw-Hill, New York, 1995).

M. Katzman, ed., Laser Satellite Communications (Prentice-Hall, Englewood Cliffs, N.J., 1987).

S. G. Lambert, W. L. Casey, Laser Communications in Space (Artech, Boston, Mass., 1995).

R. H. Kingston, Optical Sources, Detectors, and Systems: Fundamentals and Applications (Academic, San Diego, Calif., 1995).

M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1990).

E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher, B. Riley, “Description of STRV-2 lasercom flight hardware,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 38–49 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser communication transceiver fabricated by Trex Communications Corporation under contract DASG60-93-C-0016 with the U.S. Army Space and Missile Defense Command. The 13.7-cm acquisition and communications receive optics are at the top. The four 2.5-cm communications transmit optics are at the bottom. The remaining two 6.4-cm optics are for the acquisition beacons.

Fig. 2
Fig. 2

Schematic of the experiment line of sight. The transmit end of the folded path (left) is at approximately sea level. The retroreflector end of the path is at approximately-100 m elevation.

Fig. 3
Fig. 3

(a) Retroreflecting corner-cube array used in the experiment. The corner cubes are Rolyn optics, 10–24-µrad deviation angle typical, 34-µrad deviation angle maximum. Reflectivity is 83%. The total receive area is 78.5 cm2. (b) Representation of the combined return spots of the four retroreflectors, with the receive aperture superimposed. Assumptions: Point source, intercepts 5-cm-aperture corner cubes at 1207-m range (41-µrad divergence). The maximum deviation angle of the corner cubes is 34 µrad. The combined divergence of the returned beam is then 75 µrad. At 1207 m this makes a 9-cm diameter spot. But each corner cube source is 5 cm in diameter, so the combined return spot is 14 cm in diameter. This is approximately the transceiver aperture diameter, as shown. The actual observed return spot was 20 cm in diameter, reflecting, perhaps, beam steering or spreading from scintillation. Therefore, 314 cm2 is the value used in the model calculations for returned beam area.

Fig. 4
Fig. 4

(a) Front view of the lasercom transceiver and the telescope used to monitor the return power. To quantify the aperture areas precisely, both telescopes were masked as shown. (b) Side view of the same device.

Fig. 5
Fig. 5

Time series of data from 3 August 1997. The shaded areas are those where the atmospheric extinction is changing rapidly, going to or recovering from a no-data condition. See Figs. 6 and 7 for details.

Fig. 6
Fig. 6

Time series of the highlighted region of Fig. 5, detailing conditions as visibility decreases to a no-data condition. See text for details.

Fig. 7
Fig. 7

Time series of the highlighted region of Fig. 5, detailing conditions as visibility increases from a no-data condition. See text for details.

Fig. 8
Fig. 8

Bottom, log of the measured BER versus measured atmospheric extinction at 550 nm. Top, the calculated BER overlaid with the measured data for the 186-mW peak transmit power case. Middle, the calculated BER overlaid with the measured BER for the 31-mW peak transmit power case.

Tables (1)

Tables Icon

Table 1 System Model Inputs

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

τλ=exp-βλR,
Rm=3.912/β0.55.
βλ=3.91Rmλ550-0.585Rm1/3,
Sig=PcomηTxηretroηspotηrcvτ0.81,
Bkg=HbkgBWIFArcvΦdetηrcv,
det=BWdet NEPdet,
i=MPλqhc,
isig noise2¯=2qMFisigBWdet,
F=Mkeff+1-keff2-1M.
σ1=isig noise2¯+ibkg noise2¯+idet noise2¯1/2,  σ0=isig noise2η¯+ibkg noise2¯+idet noise2¯1/2.
S1i=exp-i-I2/2σ122πσ121/2,  S0i=exp-i2/2σ022πσ021/2,
err1=-0.5Iexp-i-I2/2σ12)2πσ121/2di,  err0=0.5Iexp-i2/2σ02)2πσ021/2di,  BER=err1+err0/2.

Metrics