Abstract

We present a polarization-multiplexed optical memory with urethane–urea copolymers. The side chains of the urethane–urea copolymers induce cis–trans isomerization by illumination of blue or green light, and they align perpendicular to the linear polarization of the illuminated light, thus producing optical anisotropy. We found that the material showed selective anisotropy for the particular direction that was perpendicular to that of the recording beam polarization. By use of the anisotropic property three different data pages were multiplexed at the same spot of the medium. Erasure of the recorded bit data is also demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  2. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  3. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
    [CrossRef]
  4. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
    [CrossRef]
  5. W. E. Moerner, “Molecular electronics for frequency domain optical storage; persistent spectral hole-burning: a review,” J. Mol. Electron. 1, 55–71 (1985).
  6. Z. Sekkat, W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855–1867 (1995).
    [CrossRef]
  7. Z. Sekkat, P. Prêtre, A. Knoesen, W. Volksen, V. Y. Lee, R. D. Miller, J. Wood, W. Knoll, “Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes,” J. Opt. Soc. Am. B 15, 401–413 (1998).
    [CrossRef]
  8. O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
    [CrossRef]
  9. M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
    [CrossRef]
  10. W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
    [CrossRef]
  11. W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
    [CrossRef]
  12. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4318 (1984).
    [CrossRef] [PubMed]
  13. T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
    [CrossRef] [PubMed]
  14. Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
    [CrossRef] [PubMed]
  15. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
    [CrossRef]
  16. M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 22, 1781–1783 (1998).
    [CrossRef]
  17. S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
    [CrossRef]
  18. T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
    [CrossRef]
  19. Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
    [CrossRef]

1998

1997

T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

1996

Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
[CrossRef] [PubMed]

O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
[CrossRef]

1995

Z. Sekkat, W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855–1867 (1995).
[CrossRef]

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

1993

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

1991

J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
[CrossRef] [PubMed]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

1990

1989

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1985

W. E. Moerner, “Molecular electronics for frequency domain optical storage; persistent spectral hole-burning: a review,” J. Mol. Electron. 1, 55–71 (1985).

1984

Bashaw, M. C.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Ebralidze, T. D.

Egami, C.

Gibbons, W. M.

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Hashimoto, Y.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Hell, S.

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Hesselink, L.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Higton, P.

T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Inami, W.

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

Ishikawa, M.

Ishitobi, H.

Juškaitis, R.

T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Kawata, S.

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
[CrossRef] [PubMed]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Kawata, Y.

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 22, 1781–1783 (1998).
[CrossRef]

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
[CrossRef] [PubMed]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Knoesen, A.

Knoll, W.

Kosa, T.

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

Lee, V. Y.

Miller, R. D.

Moerner, W. E.

W. E. Moerner, “Molecular electronics for frequency domain optical storage; persistent spectral hole-burning: a review,” J. Mol. Electron. 1, 55–71 (1985).

Mumladze, A. N.

Nikolova, L.

Ogata, S.

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

Okada, A.

O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
[CrossRef]

Okamoto, N.

Okuda, A.

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

Palffy-Muhoray, P.

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Prêtre, P.

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Sekkat, Z.

Shannon, P. J.

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Strickler, J. H.

Sugihara, O.

Sun, S. T.

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Tanaka, T.

Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996).
[CrossRef] [PubMed]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Todorov, T.

Tomova, N.

Tsuchimori, M.

M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 22, 1781–1783 (1998).
[CrossRef]

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
[CrossRef]

Volksen, W.

Watanabe, O.

M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 22, 1781–1783 (1998).
[CrossRef]

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
[CrossRef]

Webb, W. W.

Wijnaendts-van-Resandt, R. W.

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Wilson, T.

T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Wood, J.

Appl. Opt.

J. Mater. Chem.

O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996).
[CrossRef]

J. Mol. Electron.

W. E. Moerner, “Molecular electronics for frequency domain optical storage; persistent spectral hole-burning: a review,” J. Mol. Electron. 1, 55–71 (1985).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998).
[CrossRef]

M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997).
[CrossRef]

Nature

W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995).
[CrossRef]

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991).
[CrossRef]

Opt. Commun.

T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Science

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structure of the urethane–urea copolymer used as recording medium.

Fig. 2
Fig. 2

Mechanism of the generation of anisotropy by photoisomerization of the urethane–urea copolymer.

Fig. 3
Fig. 3

Writing and reading with various polarization directions: (a) readout results of recorded data that were recorded with the polarization angle from 0° to 180° with pitch 15°. Data were read out with four polarization states. (b) Polar plot of readout intensity of data with the function of the polarization direction of the readout beam. Data were recorded with the horizontally polarized light in this figure.

Fig. 4
Fig. 4

Optical configuration for recording and reading data. BS, beam splitter; ND, neutral density.

Fig. 5
Fig. 5

Writing of three kinds of data in the same portion. Polarization angles of the recording beam were 0°, 60°, and 120°, respectively.

Fig. 6
Fig. 6

Experimental results of erasure of bit data. (a) Bit data recorded with a vertical polarized laser beam. (b) Erasure of 3 × 3 bits at the center of (a) with the illumination of horizontal polarization light. (c) Rewrite with the vertical polarization light.

Metrics