Abstract

The liquid-crystal light valve (LCLV) is a useful component for performing integration, thresholding, and gain functions in optical neural networks. Integration of the neural activation channels is implemented by pixelation of the LCLV, with use of a structured metallic layer between the photoconductor and the liquid-crystal layer. Measurements are presented for this type of valve, examples of which were prepared for two specific neural network implementations. The valve fabrication and measurement were carried out at the State Optical Institute, St. Petersburg, Russia, and the modeling and system applications were investigated at the Institute of Microtechnology, Neuchâtel, Switzerland.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Pérennès, W. A. Crossland, “Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance,” Opt. Eng. 36, 2294–2301 (1997).
    [CrossRef]
  2. K. Sayyah, A. Au, U. Efron, T. Yamazaki, “High-resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
    [CrossRef] [PubMed]
  3. N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).
  4. C. Berger, N. Collings, “All-optical recurrent neural network,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 465–469 (1998).
    [CrossRef]
  5. N. Collings, W. Xue, “Liquid-crystal light valves as thresholding elements in neural networks: basic device requirements,” Appl. Opt. 33, 2829–2833 (1994).
    [CrossRef] [PubMed]
  6. K. Lu, B. E. A. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Opt. 30, 2354–2362 (1991).
    [CrossRef] [PubMed]
  7. C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structure with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
    [CrossRef]
  8. J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
    [CrossRef]
  9. W. Xue, Ph.D. dissertation, “Characterization of liquid crystal light valves for neural network applications” (University of Neuchâtel, Neuchâtel, Switzerland, 1994).
  10. K. Hsu, D. Psaltis, “Invariance and discrimination properties of the optical associative loop,” in Proceedings of the IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1988), Vol. II, pp. 395–402.
    [CrossRef]
  11. H. J. White, “Experimental results from an optical implementation of a simple neural network,” in Optical Computing ’88, P. H. Chavel, W. J. Goodman, G. Roblin, eds., Proc. SPIE963, 570–575 (1988).
    [CrossRef]
  12. I. Shariv, O. Gila, A. A. Friesem, “All-optical bipolar neural network with polarization-modulating neurons,” Opt. Lett. 16, 1692–1694 (1991).
    [CrossRef] [PubMed]
  13. F. M. Dickey, J. M. DeLaurentis, “Optical neural networks with unipolar weights,” Opt. Commun. 101, 303–305 (1993).
    [CrossRef]

1997 (2)

F. Pérennès, W. A. Crossland, “Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance,” Opt. Eng. 36, 2294–2301 (1997).
[CrossRef]

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

1996 (1)

1994 (1)

1993 (1)

F. M. Dickey, J. M. DeLaurentis, “Optical neural networks with unipolar weights,” Opt. Commun. 101, 303–305 (1993).
[CrossRef]

1991 (2)

1975 (2)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structure with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Au, A.

Berger, C.

C. Berger, N. Collings, “All-optical recurrent neural network,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 465–469 (1998).
[CrossRef]

Bleha, W. P.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Chaika, A. N.

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

Collings, N.

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

N. Collings, W. Xue, “Liquid-crystal light valves as thresholding elements in neural networks: basic device requirements,” Appl. Opt. 33, 2829–2833 (1994).
[CrossRef] [PubMed]

C. Berger, N. Collings, “All-optical recurrent neural network,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 465–469 (1998).
[CrossRef]

Crossland, W. A.

F. Pérennès, W. A. Crossland, “Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance,” Opt. Eng. 36, 2294–2301 (1997).
[CrossRef]

DeLaurentis, J. M.

F. M. Dickey, J. M. DeLaurentis, “Optical neural networks with unipolar weights,” Opt. Commun. 101, 303–305 (1993).
[CrossRef]

Dickey, F. M.

F. M. Dickey, J. M. DeLaurentis, “Optical neural networks with unipolar weights,” Opt. Commun. 101, 303–305 (1993).
[CrossRef]

Efron, U.

Friesem, A. A.

Gila, O.

Gooch, C. H.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structure with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Grinberg, J.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Hsu, K.

K. Hsu, D. Psaltis, “Invariance and discrimination properties of the optical associative loop,” in Proceedings of the IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1988), Vol. II, pp. 395–402.
[CrossRef]

Jacobson, A.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Lu, K.

Miller, L.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

Pérennès, F.

F. Pérennès, W. A. Crossland, “Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance,” Opt. Eng. 36, 2294–2301 (1997).
[CrossRef]

Pletneva, N. I.

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

Pourzand, A. R.

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

Psaltis, D.

K. Hsu, D. Psaltis, “Invariance and discrimination properties of the optical associative loop,” in Proceedings of the IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1988), Vol. II, pp. 395–402.
[CrossRef]

Saleh, B. E. A.

Sayyah, K.

Shariv, I.

Tarry, H. A.

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structure with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Vladimirov, F. L.

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

White, H. J.

H. J. White, “Experimental results from an optical implementation of a simple neural network,” in Optical Computing ’88, P. H. Chavel, W. J. Goodman, G. Roblin, eds., Proc. SPIE963, 570–575 (1988).
[CrossRef]

Xue, W.

N. Collings, W. Xue, “Liquid-crystal light valves as thresholding elements in neural networks: basic device requirements,” Appl. Opt. 33, 2829–2833 (1994).
[CrossRef] [PubMed]

W. Xue, Ph.D. dissertation, “Characterization of liquid crystal light valves for neural network applications” (University of Neuchâtel, Neuchâtel, Switzerland, 1994).

Yamazaki, T.

Appl. Opt. (3)

J. Phys. D (1)

C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structure with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Opt. Commun. (1)

F. M. Dickey, J. M. DeLaurentis, “Optical neural networks with unipolar weights,” Opt. Commun. 101, 303–305 (1993).
[CrossRef]

Opt. Eng. (2)

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, “A new real-time non-coherent to coherent light image converter: the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 217–225 (1975).
[CrossRef]

F. Pérennès, W. A. Crossland, “Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance,” Opt. Eng. 36, 2294–2301 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Mem. Neural Netw. (1)

N. Collings, A. R. Pourzand, F. L. Vladimirov, N. I. Pletneva, A. N. Chaika, “The construction of a multilayer analogue neural network using liquid crystal LCLVs,” Opt. Mem. Neural Netw. 6, 187–198 (1997).

Other (4)

C. Berger, N. Collings, “All-optical recurrent neural network,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 465–469 (1998).
[CrossRef]

W. Xue, Ph.D. dissertation, “Characterization of liquid crystal light valves for neural network applications” (University of Neuchâtel, Neuchâtel, Switzerland, 1994).

K. Hsu, D. Psaltis, “Invariance and discrimination properties of the optical associative loop,” in Proceedings of the IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1988), Vol. II, pp. 395–402.
[CrossRef]

H. J. White, “Experimental results from an optical implementation of a simple neural network,” in Optical Computing ’88, P. H. Chavel, W. J. Goodman, G. Roblin, eds., Proc. SPIE963, 570–575 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross section of pixelated valve. CGS, chalcogenide glass semiconductor.

Fig. 2
Fig. 2

Optical setup for testing of the pixelated-mode LCLV’s: 1, source of writing light; 2, condenser; 3, filter and modulator; 4, lens; 5, LCLV; 6, He–Ne laser; 7, liquid-crystal attenuator; 8, polarizer; 9, telescopic optical system with spatial filtration; 10, dielectric mirror; 11 and 16, photomultiplier; 12, diaphragm; 13 and 14, lens; 15, polarizer.

Fig. 3
Fig. 3

Reflection coefficient as a function of writing light intensity at different operating dc voltage for the LCLV with pixelated aluminum mirror. (a) (LCLV, 3391, λ W = 450 nm, I R = 0.47 mW/cm2. (b) LCLV, 3322, λ W = 450 nm, I R = 0.47 mW/cm2. (c) LCLV, 3325, λ W = 450 nm, I R = 0.47 mW/cm2).

Fig. 4
Fig. 4

Reflection coefficient as a function of writing light intensity for different pixels of (a) LCLV, 3291 (operating voltage, 8 V). (b) LCLV 3322 (operating voltage, 5 V). (c) LCLV 3325 (operating voltage, 4 V).

Fig. 5
Fig. 5

Normalized reflection coefficient as a function of reading laser beam power for different initial points on the transfer curve: (1) R 0 = 0.1R max, (2) R 0 = 0.5R max, (3) R 0 = 0.9R max (LCLV 3322; FWHM of reading laser beam, 165 µm).

Fig. 6
Fig. 6

Maximum contrast ratio as a function of reading laser beam power (LCLV 3322).

Fig. 7
Fig. 7

Normalized maximum contrast ratio (1) and maximum reflection coefficient (2) as a function of operating voltage (LCLV 3322; reading laser beam power, 4.5 mW).

Fig. 8
Fig. 8

Rise time as a function of operating voltage for different LCLV’s: (1) 3322; (2) 3291; (3) 3325 (I R = 0.47 mW/cm2).

Fig. 9
Fig. 9

Decay time as a function of operating voltage for different LCLV’s: (1) 3291; (2) 3322; (3) 3325 (I R = 0.47 mW/cm2).

Fig. 10
Fig. 10

Optical setup used to select the excitatory and the inhibitory behavior of the LCLV. BS, beam splitter.

Tables (2)

Tables Icon

Table 1 Response Times of LCLV’s at Optimum Operating Voltage

Tables Icon

Table 2 Summary of Performance Characteristics of a Pixelated Light Valve

Metrics