Abstract

We further extend the capability of a polymer-fiber-image-guide- (PFIG-) based optical circuit from a pure point-to-point interconnect scheme to a general-purpose optical network with data-branching capabilities. Two-dimensional array data can be inserted and taken away at free-space add–drop nodes, which are implemented with free-space minioptical components. A four-node hybrid circuit with PFIG’s to transmit bit-parallel data and free-space components to perform add–drop is experimentally demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Kiefer, V. W. Swanson, “Implementation of optical clock distribution in a supercomputer,” in Optical Computing, Volume 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–262.
  2. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  3. S. Tang, R. T. Chen, “Si CMOS process compatible guided-wave multi-Gb/s optical clock signal distribution system for Cray T-90 super-computer,” in Proceedings of the 4th International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 10–24.
  4. Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
    [CrossRef] [PubMed]
  5. H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
    [CrossRef]
  6. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
    [CrossRef]
  7. K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
    [CrossRef]
  8. J. Ai, Y. Li, “Polymer fiber-image-guide-based embedded optical circuit board,” Appl. Opt. 38, 325–332 (1999).
    [CrossRef]
  9. K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.
  10. Y. Li, T. Wang, “Distribution of light power and signals using embedded mirrors inside polymer optical fibers,” IEEE Photonics Technol. Lett. 8, 1352–1354 (1996).
    [CrossRef]
  11. Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
    [CrossRef]
  12. Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
    [CrossRef]
  13. Y. Li, T. Wang, S. Kawai, “Distributed cross-bar interconnects using VCSEL-based angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
    [CrossRef]

1999 (1)

1998 (2)

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
[CrossRef]

Y. Li, T. Wang, S. Kawai, “Distributed cross-bar interconnects using VCSEL-based angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

1997 (2)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

1996 (3)

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, “Distribution of light power and signals using embedded mirrors inside polymer optical fibers,” IEEE Photonics Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

1994 (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

1984 (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Ai, J.

Arai, D.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Chen, R. T.

S. Tang, R. T. Chen, “Si CMOS process compatible guided-wave multi-Gb/s optical clock signal distribution system for Cray T-90 super-computer,” in Proceedings of the 4th International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 10–24.

Fasanella, K.

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Hamanaka, K.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Igasaki, Y.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Kajita, M.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Kaneda, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Kasahara, K.

Kawai, S.

Kiefer, D. R.

D. R. Kiefer, V. W. Swanson, “Implementation of optical clock distribution in a supercomputer,” in Optical Computing, Volume 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–262.

Kishimoto, T.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Kitayama, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

Kosaka, H.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Kusuda, Y.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Li, Y.

J. Ai, Y. Li, “Polymer fiber-image-guide-based embedded optical circuit board,” Appl. Opt. 38, 325–332 (1999).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
[CrossRef]

Y. Li, T. Wang, S. Kawai, “Distributed cross-bar interconnects using VCSEL-based angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, “Distribution of light power and signals using embedded mirrors inside polymer optical fibers,” IEEE Photonics Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Mitsuhashi, Y.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Nakama, K.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

Nakamura, M.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Sugimoto, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Swanson, V. W.

D. R. Kiefer, V. W. Swanson, “Implementation of optical clock distribution in a supercomputer,” in Optical Computing, Volume 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–262.

Tang, S.

S. Tang, R. T. Chen, “Si CMOS process compatible guided-wave multi-Gb/s optical clock signal distribution system for Cray T-90 super-computer,” in Proceedings of the 4th International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 10–24.

Wang, T.

Y. Li, T. Wang, S. Kawai, “Distributed cross-bar interconnects using VCSEL-based angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Y. Li, T. Wang, “Distribution of light power and signals using embedded mirrors inside polymer optical fibers,” IEEE Photonics Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Appl. Opt. (3)

IEEE J. Lightwave Technol. (1)

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” IEEE J. Lightwave Technol. 16, 892–901 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photonics Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Y. Li, T. Wang, “Distribution of light power and signals using embedded mirrors inside polymer optical fibers,” IEEE Photonics Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer fiber optical array couplers,” IEEE Photonics Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

J. Lightwave Technol. (1)

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (3)

S. Tang, R. T. Chen, “Si CMOS process compatible guided-wave multi-Gb/s optical clock signal distribution system for Cray T-90 super-computer,” in Proceedings of the 4th International Conference on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 10–24.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of OC ’94 (Institute of Physics, Edinburgh, UK, 1994), pp. 227–228.

D. R. Kiefer, V. W. Swanson, “Implementation of optical clock distribution in a supercomputer,” in Optical Computing, Volume 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–262.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a four-stage 2D parallel optical circuit with add–drop capability. PFIG segments are used to relay images that can be inserted into and taken out of the circuit with lens–prism combinations.

Fig. 2
Fig. 2

Dimensions of a V-groove board to host the optical circuit of Fig. 1.

Fig. 3
Fig. 3

Details of a typical V-groove unit for hosting a lens–prism unit and for interfacing PFIG’s.

Fig. 4
Fig. 4

Photos of a packaged board with fully populated optical components and spring-loaded clamps. (a) View of the entire board, (b) closeup view of a free-space unit.

Fig. 5
Fig. 5

Photo of the optical circuit in operation with three wavelengths at three different input ports.

Fig. 6
Fig. 6

Redrawing of Fig. 1 with optical power measures labeled accordingly.

Fig. 7
Fig. 7

Resolution measurement of the four-stage circuit output with USAF resolution target. Middle and bottom images are resulting images of element 6 in group 2 in the target (7.1 lp/mm). Top curve is an intensity plot of the middle image, which shows a low modulation.

Fig. 8
Fig. 8

(a) Simulated results of the MTF of the lens–prism unit. Top, middle, and bottom curves are for an ideal diffraction-limited single unit case, an aberration-limited single unit case, and a case of four cascaded units with aberrations, respectively. (b) Simulated results of the MTF of a single PFIG component and a system of four cascaded PFIG segments.

Fig. 9
Fig. 9

Simulated and measured MTF’s of the real system. Top two curves are for lens–prism or PFIG components only. Third curve, result of the overall system; bottom curve, measured data.

Fig. 10
Fig. 10

Results of an intrastage image overlap test. All four images are taken at output port O 4v . (a) With an input 3 placed at I 1h , (b) with an input 3 placed at I 1v , (c) with both inputs activated simultaneously, and (d) simultaneously with a horizontally reversed 3 at input I 1h and a regular 3 at I 1v .

Fig. 11
Fig. 11

Results of an interstage image overlap test. All three images are taken at output port O 4v . (a) With an input 3 placed at I 1h , (b) with an input 3 placed at I 4v , and (c) with both inputs activated simultaneously.

Tables (1)

Tables Icon

Table 1 Stage-by-Stage Summary of Power Measurements

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

TiB=TiLTiC,
RiB=TiLRiC,
Oih=IihTiFTiB+IivTiFRiB,
Oiv=IihTiFRiB+IivTiFTiB.
O4h=I1hT1FT1B+I1vT1FR1BT2FR2BT3FR3BT4FT4B+I2vT2FT2BT3FR3BT4FT4B+I3hT3FT3BT4FT4B+I4vT4FR4B,
O4v=I1hT1FT1B+I1vT1FR1BT2FR2BT3FR3BT4FR4B+I2vT2FT2BT3FR3BT4FR4B+I3HT3FT3BT4FR4B+I4vT4FT4B.
O4h=TF4I1hTB2RB2+I1vTBRB3,
O4v=TF4I1hTBRB3+I1vRB4.
MF=2J1pπνpπνcosπνp,
vo=1/3p.
vo=1/3αkp.

Metrics