Abstract

Three-dimensional (3D) color holograms are recorded in a cerium-doped, strontium barium niobate (SBN:60) photorefractive crystal. These holograms are shown to reconstruct true color reproductions of the original object with an observable field of view of 37°. Angle multiplexing of two or more 3D color holograms is also demonstrated with angle tuning of the reference beam corresponding to a separation angle between stored images of 0.082°. Each of these results is compared with corresponding theoretical predictions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
    [Crossref]
  2. N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991).
    [Crossref] [PubMed]
  3. M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992);A. Aharoni, M. C. Bashaw, L. Hesselink, “Distortion-free multiplexed holography in striated photorefractive media,” Appl. Opt. 32, 1973–1982 (1993).
    [Crossref] [PubMed]
  4. D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
    [Crossref]
  5. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [Crossref] [PubMed]
  6. N. A. Vainos, M. C. Gower, “High-fidelity phase conjugation and real-time orthoscopic three-dimensional image projection in BaTiO3,” J. Opt. Soc. Am. B 8, 2355–2362 (1991).
    [Crossref]
  7. F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
    [Crossref] [PubMed]
  8. L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991).
    [Crossref] [PubMed]
  9. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.
    [Crossref]
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
    [Crossref]
  11. G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
    [Crossref]
  12. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
    [Crossref]
  13. P. Yeh, T. Y. Chang, M. W. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B 5, 1743–1749 (1988); S. Weiss, O. Werner, B. Fischer, “Analysis of coupled photorefractive wave mixing junctions,” Opt. Lett. 14, 186–188 (1989), and references therein.
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 242–265.
  15. G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.
  16. S. G. Odoulov, M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, P. Guenter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 5–43.
    [Crossref]
  17. T. H. Jeong, E. Wesly, “Progress in true color holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 183–189 (1990).
    [Crossref]
  18. PHOTO-PAINT 7 computer software (Corel Corporation) was used to compare the color composition of a hologram with the actual image of red and blue dice illuminated by laser light.
  19. S. V. Miridonov, A. V. Khomenko, D. Tentori, A. A. Kamshilin, “Information capacity of holograms in photorefractive crystals,” Opt. Lett. 19, 502–504 (1994).
    [Crossref] [PubMed]
  20. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991);J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995);A. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, “Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media,” Opt. Lett. 18, 534–536 (1993).
    [Crossref] [PubMed]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  22. J. Ma, T. Y. Chang, J. H. Hong, R. R. Neurgaonkar, G. Barbastathis, D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
    [Crossref] [PubMed]
  23. J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [Crossref]
  24. D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
    [Crossref] [PubMed]
  25. S. Campbell, P. Yeh, C. Gu, S. H. Lin, C.-J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
    [Crossref] [PubMed]

1997 (2)

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

J. Ma, T. Y. Chang, J. H. Hong, R. R. Neurgaonkar, G. Barbastathis, D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
[Crossref] [PubMed]

1996 (1)

1995 (2)

1994 (1)

1992 (2)

1991 (4)

1990 (1)

1988 (1)

1986 (1)

1983 (1)

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

1971 (1)

J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Adams, L. E.

Aharoni, A.

Amodei, J. J.

J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[Crossref]

Anderson, R. J.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

Barbastathis, G.

Barry, N. P.

Bashaw, M. C.

Bondurant, R. S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.
[Crossref]

Brady, D.

Campbell, S.

Chang, T. Y.

Cheng, C.-J.

Clark, W. W.

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Dainty, J. C.

Ewbank, M. W.

French, P. M. W.

Gower, M. C.

Gu, C.

Hellwarth, R. W.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[Crossref]

F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[Crossref]

Hesselink, L.

Hong, J. H.

Hsu, K.

Hsu, K. Y.

Hyde, S. C. W.

Jeong, T. H.

T. H. Jeong, E. Wesly, “Progress in true color holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 183–189 (1990).
[Crossref]

Jonathan, J. M. C.

Jones, R.

Kamshilin, A. A.

Ketchel, B. P.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

Khomenko, A. V.

Klein, M. B.

Kline, M. B.

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Lin, S. H.

Ma, J.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Miller, M. J.

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Miridonov, S. V.

Mok, F. H.

Naylor, D. L.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[Crossref]

Neurgaonkar, R. R.

J. Ma, T. Y. Chang, J. H. Hong, R. R. Neurgaonkar, G. Barbastathis, D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
[Crossref] [PubMed]

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Odoulov, S. G.

S. G. Odoulov, M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, P. Guenter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 5–43.
[Crossref]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Oliver, J. R.

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Psaltis, D.

Salamo, G. J.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Sayano, K.

Sharp, E. J.

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 242–265.

Soskin, M. S.

S. G. Odoulov, M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, P. Guenter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 5–43.
[Crossref]

Stebler, D. L.

J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[Crossref]

Stoll, H. M.

Strohkendl, F. P.

Tackitt, M. C.

Tam, P. W.

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[Crossref]

Tentori, D.

Vainos, N. A.

Valley, G. C.

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[Crossref]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

Wechsler, B. A.

Wesly, E.

T. H. Jeong, E. Wesly, “Progress in true color holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 183–189 (1990).
[Crossref]

Wood, G. L.

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

Yeh, P.

Zhao, F.

Appl. Phys. Lett. (2)

B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[Crossref]

J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[Crossref]

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[Crossref]

J. Appl. Phys. (1)

D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[Crossref]

Opt. Lett. (11)

F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
[Crossref]

S. V. Miridonov, A. V. Khomenko, D. Tentori, A. A. Kamshilin, “Information capacity of holograms in photorefractive crystals,” Opt. Lett. 19, 502–504 (1994).
[Crossref] [PubMed]

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991);J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995);A. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, “Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media,” Opt. Lett. 18, 534–536 (1993).
[Crossref] [PubMed]

F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
[Crossref] [PubMed]

L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991).
[Crossref] [PubMed]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
[Crossref] [PubMed]

N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991).
[Crossref] [PubMed]

M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992);A. Aharoni, M. C. Bashaw, L. Hesselink, “Distortion-free multiplexed holography in striated photorefractive media,” Appl. Opt. 32, 1973–1982 (1993).
[Crossref] [PubMed]

J. Ma, T. Y. Chang, J. H. Hong, R. R. Neurgaonkar, G. Barbastathis, D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997).
[Crossref] [PubMed]

D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
[Crossref] [PubMed]

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C.-J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
[Crossref] [PubMed]

Other (6)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427.
[Crossref]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 242–265.

G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.

S. G. Odoulov, M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, P. Guenter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 5–43.
[Crossref]

T. H. Jeong, E. Wesly, “Progress in true color holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 183–189 (1990).
[Crossref]

PHOTO-PAINT 7 computer software (Corel Corporation) was used to compare the color composition of a hologram with the actual image of red and blue dice illuminated by laser light.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Gain coefficient for the SBN photorefractive crystal measured as a function of angle for λ = 488 nm and λ = 647 nm. Inset, geometry used to obtain the measurements.

Fig. 2
Fig. 2

Experimental apparatus employed to study color holographic reproduction with a photorefractive storage crystal. The laser light used to write the color hologram consists of copropagating λ = 488 nm and λ = 647 nm beams from argon- and krypton-ion lasers, respectively. A, aperture; BS, beam splitter; BX, beam expander; M, mirror; ND, neutral-density filter; λ/2, half-wave plate.

Fig. 3
Fig. 3

Calculation of expected FOV.

Fig. 4
Fig. 4

(a) Various perspectives of the 3D color hologram observed during readout. The parallax between the red and the blue die is evident by comparison of the relative position of parts of each die (e.g., the lower right-hand corner of the blue die with the upper left-hand corner of the red die). (b) Two perspectives of silver dice illuminated by λ = 488 nm. The observed FOV is increased twofold when two SBN crystals are placed side by side to double the effective image storage area.

Fig. 5
Fig. 5

Intensity on readout of two angle-multiplexed holograms demonstrates a resolution of 0.1°.

Fig. 6
Fig. 6

Data show the holographic grating decay written at a wavelength of λ = 488 nm (a) when beam 2 is used as the read beam and beam 1 is blocked and (b) when beam 1 is used as the read beam and beam 2 is blocked. Beam fanning occurs opposite the ĉ-axis direction. BS, beam splitter; M, mirror.

Tables (2)

Tables Icon

Table 1 Color Balance of Dice Illuminated with Laser Light versus Color Balance of Holographic Image

Tables Icon

Table 2 Comparison of Holographic Grating Decay Time for Gratings Written at λ = 488 and λ = 514 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ediff  EreadErefEobj*+EobjEref*=ErefEobj*Eread+EobjEref*Eread.
Γ=1LclnIcIuc=reffcos θkg1+kg/ko2,
Leff=Lc cosϕ/2-s,
FOV=2 arctanLeff/2d,
ΔθΛ/l,

Metrics