Abstract

A high-speed hybrid optical–digital correlator system was designed, constructed, modeled, and demonstrated experimentally. This correlator is capable of operation at approximately 3000 correlations/s. The input scene is digitized at a resolution of 512 × 512 pixels and the phase information of the two-dimensional fast Fourier transform calculated and displayed in the correlator filter plane at normal video frame rates. High-fidelity reference template images are stored in a phase-conjugating optical memory placed at the nominal input plane of the correlator and reconstructed with a high-speed acousto-optic scanner; this allows for cross correlation of the entire reference data set with the input scene within one frame period. A high-speed CCD camera is used to capture the correlation-plane image, and rapid correlation-plane processing is achieved with a parallel processing architecture.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).
  2. L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1989).
    [CrossRef]
  3. T. Yamashita, T. Shimada, Y. Akebi, T. Matsumoto, K. Tsubota, K. Fujioka, Y. Takafuji, “Very small HDTV poly-Si TFT-LCD with fully integrated drivers,” 56, 43–46 (1993).
  4. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
    [CrossRef]
  5. B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am A 3, 1579–1584 (1986).
    [CrossRef]
  6. A. Mahalanobis, B. V. K. Vijaya Kumar, D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987).
    [CrossRef] [PubMed]
  7. R. R. Kallman, “Construction of low noise optical correlation filters,” Appl. Opt. 25, 1032–1033 (1986).
    [CrossRef] [PubMed]
  8. P. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991).
    [CrossRef]
  9. S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).
  10. V. Laude, Ph. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier spatial light modulator filters,” Appl. Opt. 33, 4465–4471 (1994).
    [CrossRef] [PubMed]
  11. R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
    [CrossRef]
  12. J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
  13. J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
    [CrossRef] [PubMed]
  14. D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
    [CrossRef]
  15. M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
    [CrossRef] [PubMed]
  16. S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).
  17. Crystals sourced from Fujian Castech, Deltronic Inc., and the Optical Material Research Centre, Strathclyde University, UK.
  18. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
    [CrossRef] [PubMed]
  19. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]
  20. H. Sasaki, Y. Fainman, S. H. Lee, “Gray-scale fidelity in volume-multiplexed photorefractive memory,” Opt. Lett. 18, 1358–1360 (1993).
    [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  22. A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” (University of Neuchâtel, Neuchâtel, Switzerland, 1995).
  23. J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
    [CrossRef]
  24. D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. SPIE1297, 176–185 (1990).
    [CrossRef]
  25. V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
    [CrossRef]
  26. K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
    [CrossRef]
  27. J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
    [CrossRef]
  28. “FLUKE: 100 Hz enhanced definition TV testing,” application note (Fluke Corporation, Everett, Wash., 1994).

1997

1996

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

1995

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

1994

1993

H. Sasaki, Y. Fainman, S. H. Lee, “Gray-scale fidelity in volume-multiplexed photorefractive memory,” Opt. Lett. 18, 1358–1360 (1993).
[CrossRef]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

1992

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
[CrossRef]

1991

1987

1986

B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am A 3, 1579–1584 (1986).
[CrossRef]

R. R. Kallman, “Construction of low noise optical correlation filters,” Appl. Opt. 25, 1032–1033 (1986).
[CrossRef] [PubMed]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Budgett, D. M.

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

Burns, D. C.

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

Casasent, D.

Chatwin, C. R.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Chavel, P.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Collings, N.

M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
[CrossRef] [PubMed]

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” (University of Neuchâtel, Neuchâtel, Switzerland, 1995).

Dandliker, R.

Duelli, M.

Erbach, P. S.

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

Fainman, Y.

Ford, J. E.

Gregory, D. A.

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. SPIE1297, 176–185 (1990).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1989).
[CrossRef]

Hudson, T. D.

D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. SPIE1297, 176–185 (1990).
[CrossRef]

Jones, B. K.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Kallman, R. R.

Kirsch, J. C.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. SPIE1297, 176–185 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Laude, V.

V. Laude, Ph. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier spatial light modulator filters,” Appl. Opt. 33, 4465–4471 (1994).
[CrossRef] [PubMed]

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Lee, S. H.

Ma, J.

Mahalanobis, A.

Mazé, S.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

McClain, J. L.

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

Mok, F. H.

O’Hara, A.

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

Ohkubo, K.

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

Ohtsubo, J.

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

Pourzand, A. R.

M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
[CrossRef] [PubMed]

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” (University of Neuchâtel, Neuchâtel, Switzerland, 1995).

Réfrégier, P.

Réfrégier, Ph.

V. Laude, Ph. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier spatial light modulator filters,” Appl. Opt. 33, 4465–4471 (1994).
[CrossRef] [PubMed]

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

Sasaki, H.

Scott, B. F.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Sharp, J. H.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

Stoll, H. M.

Tackitt, M. C.

Taketomi, Y.

Tang, P. C.

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

Tang, P. E.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Thie, M. W.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Tonda, S.

S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).

S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).

Underwood, I.

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

Vass, D. G.

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

Vijaya Kumar, B. V. K.

Wang, R. K.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Young, R. C. D.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Yu, F. T. S.

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Inst. Phys. Conf. Serv.

D. C. Burns, I. Underwood, A. O’Hara, D. G. Vass, “Electronically addressed ferroelectric liquid crystal spatial light modulators,” Inst. Phys. Conf. Serv. 139, 543–546 (1995).

J. Opt. Soc. Am A

B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am A 3, 1579–1584 (1986).
[CrossRef]

Opt. Commun.

V. Laude, S. Mazé, P. Chavel, Ph. Réfrégier, “Amplitude and phase coding measurements of a liquid crystal television,” Opt. Commun. 103, 33–38 (1993).
[CrossRef]

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

Opt. Eng.

J. L. McClain, P. S. Erbach, D. A. Gregory, F. T. S. Yu, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 31, 951–954 (1996).
[CrossRef]

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).

Other

S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).

Crystals sourced from Fujian Castech, Deltronic Inc., and the Optical Material Research Centre, Strathclyde University, UK.

S. Tonda, “Design of sub-optimal filters for optical implementation,” (Thomson-CSF, Paris, 1996).

L. J. Hornbeck, “Deformable-mirror spatial light modulators,” in Spatial Light Modulators and Applications III, U. Efron, ed., Proc. SPIE1150, 86–102 (1989).
[CrossRef]

T. Yamashita, T. Shimada, Y. Akebi, T. Matsumoto, K. Tsubota, K. Fujioka, Y. Takafuji, “Very small HDTV poly-Si TFT-LCD with fully integrated drivers,” 56, 43–46 (1993).

D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. SPIE1297, 176–185 (1990).
[CrossRef]

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” (University of Neuchâtel, Neuchâtel, Switzerland, 1995).

“FLUKE: 100 Hz enhanced definition TV testing,” application note (Fluke Corporation, Everett, Wash., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic representation of the compact phase-conjugating correlator system. BS, beam splitter; L, lens; SF, spatial filter.

Fig. 2
Fig. 2

Sample image of the test component for storage in the optical memory.

Fig. 3
Fig. 3

Optical memory recording configuration. BS, beam splitter; EX, expander; L, lens; PS, point stop; S, shutter; SF, spatial filter.

Fig. 4
Fig. 4

Images from the optical memory. (a) Original image, (b) edge-enhanced original after spatial filtering, (c) reconstruction of edge-enhanced image, (d) phase-conjugate reconstruction.

Fig. 5
Fig. 5

Experimental configuration used when addressing the optical memory to reconstruct the phase conjugate of the stored image. BS, beam splitter; EX, expander; L, lens; PS, point stop; S, shutter; SF, spatial filter.

Fig. 6
Fig. 6

Phase lag and transmittance of a blue channel SLM versus applied rms voltage.

Fig. 7
Fig. 7

Intensity variation trace: (a) One field is set to gray-scale value 255 and the other to gray-scale value zero; (b) both fields set to gray-scale value 255.

Fig. 8
Fig. 8

Architecture of the FFT hardware, showing data flow and major components and data buffering to enable sustained real-time operation.

Fig. 9
Fig. 9

Completed FFT subsystem hardware.

Fig. 10
Fig. 10

Correlation-plane processing hardware architecture.

Fig. 11
Fig. 11

Overview of digital subsystems and their coordination (IB, imaging board).

Fig. 12
Fig. 12

Autocorrelation of the test component at 0° out-of-plane rotation and 20° in-plane rotation: (a) as captured correlation-plane image; (b) enlarged three-dimensional plot of correlation peak.

Fig. 13
Fig. 13

Autocorrelation result of Fig. 12 after thresholding. (a) Correlation plane. (b) Isometric view of correlation peak.

Fig. 14
Fig. 14

Autocorrelation of suboptimal OT-SDF.

Fig. 15
Fig. 15

Correlation-plane response to translation of the component in the input image: (a) is translated by 15 pixels horizontally and vertically with respect to the result shown in (b).

Tables (5)

Tables Icon

Table 1 Image Parameters Computed in Parallel by Imaging Board PGA’s

Tables Icon

Table 2 Image Parameters Computed by the Host CPU

Tables Icon

Table 3 Nonuniformity of Red Channel SLM (Phase in Radians)

Tables Icon

Table 4 Nonuniformity of Green Channel SLM (Phase in Radians)

Tables Icon

Table 5 Nonuniformity of Blue Channel SLM (Phase in Radians)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ηmax=sin2πΔndλ cos B,
E1=Pηmaxt,
E2=P 0t ηtdt=P 0tsin2ν2+ξt21/21+ξt2/ν2dt,
ξt=γt-BπdΛ,  ν=πΔndλcRcS1/2,cR=cos θ,cS=cos θ-λ cos ϕΛn,

Metrics