Abstract

The narrowing effects of scatterers on the lifetime and the spectral width of the laser-induced fluorescence of organic dyes hosted in poly(methyl methacrylate) polymer sheets were studied. The excitation source was a distributed-feedback dye laser emitting 0.5-ps pulses at 496 nm. Spectral and temporal features were recorded simultaneously on a spectrograph–streak-camera detection system. The results were then compared with those obtained from dye solutions in methanol that were recorded in previous studies. The effects of the different host environments on the fluorescence characteristics of the dye were thus investigated. These effects are currently studied when the dye is inserted into human tissue in an attempt to boost tumor detection and photodynamic-therapy efficiency. Some initial results are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvian, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  2. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JEPT 26(4), 835–840 (1968).
  3. W. L. Sha, C. H. Liu, R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19, 1922–1924 (1994).
    [CrossRef] [PubMed]
  4. R. M. Balachandran, N. M. Lawandy, “Interface reflection effects in photonic paint,” Opt. Lett. 20, 1271–1273 (1995).
    [CrossRef] [PubMed]
  5. W. Zhang, N. Cue, K. M. Yoo, “Emission linewidth of laser action in random gain media,” Opt. Lett. 20, 961–963 (1995).
    [CrossRef] [PubMed]
  6. J. Martorell, R. M. Balachandran, N. M. Lawandy, “Radiative coupling between photonic paint layers,” Opt. Lett. 21, 239–241 (1996).
    [CrossRef] [PubMed]
  7. S. John, G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
    [CrossRef] [PubMed]
  8. R. M. Balachandran, N. M. Lawandy, J. A. Moon, “Theory of laser action in scattering gain media,” Opt. Lett. 22, 319–321 (1997).
    [CrossRef] [PubMed]
  9. D. S. Wiersma, A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [CrossRef]
  10. R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996).
    [CrossRef] [PubMed]
  11. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
    [CrossRef] [PubMed]
  12. G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
    [CrossRef]
  13. U. Brackmann, “Lambdachrome laser dyes” (Lambda Physik GmbH, Göttingen, Germany, 1994).
  14. Th. M. Nieuwenhuizen, J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
    [CrossRef]
  15. P. W. Anderson, “The question of classical localization. A theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
    [CrossRef]
  16. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
    [CrossRef]
  17. M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117, 475–479 (1995).
    [CrossRef]

1997 (1)

1996 (5)

1995 (3)

1994 (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvian, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

W. L. Sha, C. H. Liu, R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19, 1922–1924 (1994).
[CrossRef] [PubMed]

1993 (1)

Th. M. Nieuwenhuizen, J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
[CrossRef]

1991 (1)

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[CrossRef]

1985 (1)

P. W. Anderson, “The question of classical localization. A theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[CrossRef]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JEPT 26(4), 835–840 (1968).

Alfano, R. R.

Anderson, P. W.

P. W. Anderson, “The question of classical localization. A theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[CrossRef]

Anglos, D.

G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
[CrossRef]

Balachandran, R. M.

Berger, G. A.

Brackmann, U.

U. Brackmann, “Lambdachrome laser dyes” (Lambda Physik GmbH, Göttingen, Germany, 1994).

Cue, N.

Genack, A. Z.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvian, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

John, S.

S. John, G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[CrossRef] [PubMed]

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[CrossRef]

Kempe, M.

Lagendijk, A.

D. S. Wiersma, A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Lawandy, N. M.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JEPT 26(4), 835–840 (1968).

Liu, C. H.

Luck, J. M.

Th. M. Nieuwenhuizen, J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
[CrossRef]

Martorell, J.

Moon, J. A.

Nieuwenhuizen, Th. M.

Th. M. Nieuwenhuizen, J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
[CrossRef]

Pacheco, D. P.

Pang, G.

S. John, G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[CrossRef] [PubMed]

Papazoglou, T. G.

G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
[CrossRef]

Sauvian, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvian, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Sha, W. L.

Siddique, M.

M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
[CrossRef] [PubMed]

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117, 475–479 (1995).
[CrossRef]

Vazgiouraki, E.

G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
[CrossRef]

Wang, Q. Z.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117, 475–479 (1995).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Yang, L.

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117, 475–479 (1995).
[CrossRef]

Yoo, K. M.

Zacharakis, G.

G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
[CrossRef]

Zhang, W.

Appl. Opt. (1)

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvian, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Opt. Commun. (1)

M. Siddique, L. Yang, Q. Z. Wang, R. R. Alfano, “Mirrorless laser action from optically pumped dye-treated animal tissues,” Opt. Commun. 117, 475–479 (1995).
[CrossRef]

Opt. Lett. (6)

Philos. Mag. B (1)

P. W. Anderson, “The question of classical localization. A theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[CrossRef]

Phys. Rev. A (1)

S. John, G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (2)

D. S. Wiersma, A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Th. M. Nieuwenhuizen, J. M. Luck, “Skin layer of diffusive media,” Phys. Rev. E 48, 569–588 (1993).
[CrossRef]

Phys. Today (1)

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[CrossRef]

Sov. Phys. JEPT (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JEPT 26(4), 835–840 (1968).

Other (2)

G. Zacharakis, D. Anglos, E. Vazgiouraki, T. G. Papazoglou, “Temporal and spectral effects of scatterers on sub-picosecond laser-induced fluorescence of organic dyes,” in Conference on Lasers and Electro-Optics (CLEO/USA), Vol. 6 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper Ctu99.
[CrossRef]

U. Brackmann, “Lambdachrome laser dyes” (Lambda Physik GmbH, Göttingen, Germany, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the experimental setup. M, mirrors; BS, beam splitter; F, lens; PD, photodiode.

Fig. 2
Fig. 2

Time profile of the fluorescence decay of the R6G solution (dye and scatterer concentrations of 8.2 × 10-3 M and 7.2 × 1010 cm-3, respectively) for excitation energies of 9.5 µJ (dashed–dotted curve) and 26 µJ (solid curve). The characteristic time constant of the single-exponential fitting was t = 1639 ± 120 ps.

Fig. 3
Fig. 3

Spectral width of the fluorescence of the R6G solution (dye and scatterer concentrations of 8.2 × 10-3 M and 7.2 × 1010 cm-3, respectively) for excitation energies of 9.5 µJ (dashed–dotted curve) and 26 µJ (solid curve).

Fig. 4
Fig. 4

Time profile of the fluorescence decay of the R6G polymer sheet (dye and scatterer concentrations of 10-2 M and 3.7 × 1014 cm-3, respectively) for excitation energies of 9.5 µJ (dashed–dotted curve) and 26 µJ (solid curve). The characteristic time constants of the double-exponential fitting were t 1 = 104 ± 3 ps and t 2 = 917 ± 28 ps.

Fig. 5
Fig. 5

Spectral width of the fluorescence of the R6G polymer sheet (dye and scatterer concentrations of 10-2 M and 3.7 × 1014 cm-3, respectively) for excitation energies of 9.5 µJ (dashed–dotted curve) and 26 µJ (solid curve).

Fig. 6
Fig. 6

Spectral width of the fluorescence of the DCM polymer sheet (dye and scatterer concentrations of 10-2 M and 5.6 × 1014 cm-3, respectively) for excitation energies of 9 µJ (dashed–dotted curve) and 28 µJ (solid curve).

Fig. 7
Fig. 7

Dependence of the fluorescence lifetime on the excitation energy as recorded for a R6G polymer sheet (dye and scatterer concentrations of 6 × 10-3 M and 3.7 × 1014 cm-3, respectively) with and without scatterers. Both the experimental values and values derived from the theoretical fitting are depicted.

Fig. 8
Fig. 8

Dependence of the threshold energy on the dye (R6G) concentration. The scatterers’ concentration is kept constant at 3.6 × 1014 cm-3.

Fig. 9
Fig. 9

Time-resolved fluorescence emission of R6G embedded in human arterial tissue compared with the corresponding signal recorded from a R6G–methanol solution.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W˙Pr, t=D2WPr, t-σabscNT-N1r, tWPr, t+1l IPr, t,
W˙Pr, t=D2WEr, t-σemcN1r, tWEr, t+1τe N1r, t,
N˙1r, t=σabscNT-N1r, tWPr, t-σemcN1r, tWEr, t-1τe N1r, t,

Metrics