Abstract

A Monte Carlo simulation code developed to model time-domain transillumination measurements with small-area detectors through an optically thick scattering slab is presented. A hybrid approach has been implemented to reduce calculation times. Most of the scattering slab is treated stochastically, albeit with variance reduction techniques and the isotropic diffusion similarity rule. The contribution to the output signal per unit area and time of photon packets propagating in a thin slice near the output face of the slab is calculated analytically after each propagation step. This approach drastically reduces the calculation time but produces spikes in the temporal signals.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. DePalma, J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).
  2. R. R. Meir, J.-S. Lee, D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
    [CrossRef]
  3. L. R. Poole, B. B. Venable, J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
    [CrossRef] [PubMed]
  4. R. A. J. Groenhuis, H. A. Ferwerda, J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection coefficients. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  5. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  6. J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
    [CrossRef] [PubMed]
  7. J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
    [CrossRef]
  8. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
    [CrossRef] [PubMed]
  9. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  10. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.
  11. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
    [CrossRef] [PubMed]
  12. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
    [CrossRef] [PubMed]
  13. S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
    [CrossRef]
  14. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
    [CrossRef] [PubMed]
  15. G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
    [CrossRef] [PubMed]
  16. J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
    [CrossRef]
  17. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
    [CrossRef] [PubMed]
  18. E. B. de Haller, C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
    [CrossRef]
  19. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  20. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlistra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
    [CrossRef] [PubMed]
  21. É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
    [CrossRef]
  22. O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
    [CrossRef]
  23. A. Kienle, R. Hibst, R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).
  24. P. Marquet, F. Bevilacqua, C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 17–24 (1995).
    [CrossRef]
  25. É. Tinet, S. Avrillier, J. M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
    [CrossRef]
  26. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  27. L. L. Carter, E. D. Cashwell, “Particle-transport simulations with the Monte-Carlo method,” (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Oak Ridge, 1975).
  28. L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
    [CrossRef]
  29. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
    [CrossRef] [PubMed]
  30. R. Graaff, J. G. Aarnoudse, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
    [CrossRef]
  31. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
    [CrossRef]
  32. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  33. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
    [CrossRef]

1998

1997

1996

1993

E. B. de Haller, C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlistra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

1991

1990

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
[CrossRef]

1989

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[CrossRef] [PubMed]

1987

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef] [PubMed]

1986

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

1984

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

1983

1981

1978

1972

J. J. DePalma, J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).

Aarnoudse, J. G.

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Anderson, D. E.

Arridge, S. R.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Avrillier, S.

É. Tinet, S. Avrillier, J. M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
[CrossRef]

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
[CrossRef]

Bartelt, H.

O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
[CrossRef]

Bevilacqua, F.

P. Marquet, F. Bevilacqua, C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 17–24 (1995).
[CrossRef]

Bui, M.-H.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

Campbell, J. W.

Carmona, F.

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
[CrossRef]

Carter, L. L.

L. L. Carter, E. D. Cashwell, “Particle-transport simulations with the Monte-Carlo method,” (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Oak Ridge, 1975).

Cashwell, E. D.

L. L. Carter, E. D. Cashwell, “Particle-transport simulations with the Monte-Carlo method,” (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Oak Ridge, 1975).

Chance, B.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Chernomordik, V.

Contini, D.

Cope, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Crowe, J.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

Dassel, A. C. M.

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

de Cosnac, B.

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

de Haller, E. B.

E. B. de Haller, C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
[CrossRef]

de Mul, F. F. M.

Delettre, E.

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
[CrossRef]

Delpy, D. T.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef] [PubMed]

DePalma, J. J.

J. J. DePalma, J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).

Depeursinge, C.

E. B. de Haller, C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
[CrossRef]

P. Marquet, F. Bevilacqua, C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 17–24 (1995).
[CrossRef]

Essenpreis, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Ferwerda, H. A.

Firbank, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Gasper, J.

J. J. DePalma, J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).

Graaff, R.

Groenhuis, R. A. J.

Hasegawa, Y.

Haselgrove, J.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Hebden, J. C.

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Hibst, R.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

A. Kienle, R. Hibst, R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

Jarry, G.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

Jentink, H. W.

R. Graaff, J. G. Aarnoudse, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Key, H.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Kienle, A.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

A. Kienle, R. Hibst, R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

Klingenbeck-Regn, K.

O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
[CrossRef]

Koelink, M. H.

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Lansiart, A.

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

Laurent, D.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

Lee, J.-S.

Leigh, J.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Lilge, L.

Maarek, J. M.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

Maarek, J.-M.

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

Maris, M.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Marquet, P.

P. Marquet, F. Bevilacqua, C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 17–24 (1995).
[CrossRef]

Martelli, F.

Meir, R. R.

Nomura, Y.

Nossal, R.

Ollivier, J. P.

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

Patterson, M. S.

Poole, L. R.

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Reinfelder, H.-E.

O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
[CrossRef]

Schuetz, O.

O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
[CrossRef]

Servant, L.

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
[CrossRef]

Steiner, R.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

A. Kienle, R. Hibst, R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

Tamura, M.

ten Bosch, J. J.

Tinet, E.

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
[CrossRef]

L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
[CrossRef]

Tinet, É.

É. Tinet, S. Avrillier, J. M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

Tualle, J. M.

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef] [PubMed]

Venable, B. B.

Wang, L.

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

Wang, N.-G.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[CrossRef] [PubMed]

Yamada, Y.

Yee, C.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

Zaccanti, G.

Zijlistra, W. G.

Adv. Exp. Med. Biol.

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
[CrossRef] [PubMed]

Appl. Opt.

R. R. Meir, J.-S. Lee, D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
[CrossRef]

L. R. Poole, B. B. Venable, J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
[CrossRef] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection coefficients. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
[CrossRef] [PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
[CrossRef] [PubMed]

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlistra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

IEEE Trans. Biomed. Eng.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Phys. France

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
[CrossRef]

Med. Bio. Eng. Comp.

J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
[CrossRef]

E. B. de Haller, C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
[CrossRef]

Med. Phys.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Opt. Eng.

R. Graaff, J. G. Aarnoudse, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Photogr. Sci. Eng.

J. J. DePalma, J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).

Phys. Med. Biol.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Other

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).
[CrossRef]

É. Tinet, L. Servant, F. Carmona, S. Avrillier, J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 41–51 (1993).
[CrossRef]

O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. SPIE2082, 123–129 (1994).
[CrossRef]

A. Kienle, R. Hibst, R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

P. Marquet, F. Bevilacqua, C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 17–24 (1995).
[CrossRef]

L. L. Carter, E. D. Cashwell, “Particle-transport simulations with the Monte-Carlo method,” (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Oak Ridge, 1975).

L. Servant, E. Tinet, S. Avrillier, F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. SPIE1968, 154–162 (1993).
[CrossRef]

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41 (1991).
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller, D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry for modeling a compressed breast with an inclusion.

Fig. 2
Fig. 2

Comparison of the speed of convergence obtained with different acceleration techniques. Simulations were performed on a 20-mm-thick homogeneous slab in which μ s = 20 mm-1, g = 0.95, and μ a = 0.005 mm-1. The curves represent, as a function of the time of calculation, the root-mean-square error between the time variation of the spatially integrated transmission through the slab calculated with Monte Carlo simulations and the diffusion model. Simulations were performed on a Sun Sparc 20 workstation.

Fig. 3
Fig. 3

Detector aperture seen by a photon packet at the end of a diffusion step.

Fig. 4
Fig. 4

Medium configuration modeled by the HMC program.

Fig. 5
Fig. 5

Time-resolved transmission through a 50-mm-thick slab (μ s = 20 mm-1, g = 0.95, and μ a = 0.005 mm-1) after 50 h of simulation on a Pentium Pro 200 MHz computer. (a) Transmission through a 25-mm2 area calculated with SMC and HMC simulations. (b) Transmission through a 1-mm2 area for a SMC simulation and the response on a punctual detector for a HMC simulation. The associated diffusion approximation (DA) curve is also shown.

Fig. 6
Fig. 6

Convergence comparison between SMC and HMC simulations for the time-resolved transmission through a 20-mm-thick slab in which μ s = 20 mm-1, g = 0.95, and μ a = 0.005 mm-1.

Fig. 7
Fig. 7

Effect of high-score photons on the convergence of a HMC simulation.

Tables (1)

Tables Icon

Table 1 Comparison between Stochastic and Hybrid Monte Carlo Results

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

μt=μa+μs.
alb=μs/μs+μa.
rf=ri+lμ.
rf·rf>R2.
rcross=ri+l2μ
rcross·rcross=R2.
l2=-A+A2+R2-Ri21/2,
μt2l=μt1l1+μt2l2.
rf=ri+l1+l2μ.
RiR+l.
l1=-A±A2+R2-Ri21/2.
B=A2+R2-Ri2>0.
l1=-A-B,
μs=μs1-g
Pdet=12π  pcos θexp-μtrθ, ϕdϕd cos θ,
PdetrΔΩ2π pcos θexp-μtr=pcos θ2πΔzr3exp-μtrΔs,
PdetrΔs=pcos θ2πΔzr3exp-μtr1m2.
cos θ=μxxP2-xP1+μyyP2-yP1+μzzP2-zP1r,
PdetrΔs=14πΔzr3exp-μtr1m2.
ldiff=-1μslogχ   if μz0
ldiff=-1μslog1-Cχ    if μz>0,
C=1-exp-μsΔzμz
WT=exp-μtΔzμzW,
WA=exp-μsΔzμz-exp-μtΔzμzW.

Metrics