Abstract

The measured optical-constant errors that arise in the Kretschmann configuration from surface roughness have been analyzed. The broadening of the half-width and the change in the reflection minimum of the attenuated-total-reflection curve that are due to the surface roughness are described. Calculation of the correct optical constants and silver-film thickness is demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
    [CrossRef]
  2. W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189–191 (1981).
    [CrossRef]
  3. H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver film,” Opt. Commun. 18, 391–394 (1976).
    [CrossRef]
  4. D. L. Hornauer, “Light scattering experiment on silver films of different roughness using surface plasmon excitation,” Opt. Commun. 16, 76–79 (1976).
    [CrossRef]
  5. S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992).
    [CrossRef]
  6. A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
    [CrossRef]
  7. A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B 14, 484–499 (1976).
    [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verleg, Berlin, 1988), Chap. 2, pp. 10–16.
  9. J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional, random microrough surface,” Opt. Eng. 25, 613–617 (1986).
    [CrossRef]
  10. G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
    [CrossRef]

1992 (1)

S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992).
[CrossRef]

1986 (1)

J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional, random microrough surface,” Opt. Eng. 25, 613–617 (1986).
[CrossRef]

1982 (1)

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

1981 (1)

1979 (1)

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

1976 (3)

A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B 14, 484–499 (1976).
[CrossRef]

H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver film,” Opt. Commun. 18, 391–394 (1976).
[CrossRef]

D. L. Hornauer, “Light scattering experiment on silver films of different roughness using surface plasmon excitation,” Opt. Commun. 16, 76–79 (1976).
[CrossRef]

1975 (1)

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
[CrossRef]

Chen, J. M.

Chen, W. P.

Guha, J. K.

H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver film,” Opt. Commun. 18, 391–394 (1976).
[CrossRef]

Hornauer, D. L.

D. L. Hornauer, “Light scattering experiment on silver films of different roughness using surface plasmon excitation,” Opt. Commun. 16, 76–79 (1976).
[CrossRef]

Lopez-Rios, T.

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B 14, 484–499 (1976).
[CrossRef]

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
[CrossRef]

Maystre, D.

J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional, random microrough surface,” Opt. Eng. 25, 613–617 (1986).
[CrossRef]

Mills, D. L.

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
[CrossRef]

Negm, S.

S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992).
[CrossRef]

Palmari, J. P.

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verleg, Berlin, 1988), Chap. 2, pp. 10–16.

Rasigni, G.

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

Rasigni, M.

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

Rossi, J. P.

J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional, random microrough surface,” Opt. Eng. 25, 613–617 (1986).
[CrossRef]

Simon, H. J.

H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver film,” Opt. Commun. 18, 391–394 (1976).
[CrossRef]

Talaat, H.

S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992).
[CrossRef]

Varnier, F.

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

Vuye, G.

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

Zierau, W.

A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B 14, 484–499 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

H. J. Simon, J. K. Guha, “Directional surface plasmon scattering from silver film,” Opt. Commun. 18, 391–394 (1976).
[CrossRef]

D. L. Hornauer, “Light scattering experiment on silver films of different roughness using surface plasmon excitation,” Opt. Commun. 16, 76–79 (1976).
[CrossRef]

Opt. Eng. (1)

J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional, random microrough surface,” Opt. Eng. 25, 613–617 (1986).
[CrossRef]

Phys. Rev. B (3)

G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, “Autocovariance functions, root-mean-square-roughness height, and autocovariance length for rough deposits of copper, silver, and gold,” Phys. Rev. B 25, 2315–2323 (1982).
[CrossRef]

A. A. Maradudin, D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975).
[CrossRef]

A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B 14, 484–499 (1976).
[CrossRef]

Solid State Commun. (1)

S. Negm, H. Talaat, “Radiative and nonradiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992).
[CrossRef]

Surf. Sci. (1)

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verleg, Berlin, 1988), Chap. 2, pp. 10–16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the ATR coupler in the Kretschmann configuration: SP, surface plasma.

Fig. 2
Fig. 2

Surface morphology of silver film with surface roughness δ = 4.547 nm, σ = 14.559 nm.

Fig. 3
Fig. 3

Dashed curve, measured ATR curve with surface roughness; solid curve, simulated ATR curve with no surface roughness.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

R=r01+r12 exp2ikz1d1+r01r12 exp2ikz1d2,
rik=kziεi-kzkεkkziεi+kzkεk,
R=1-4ΓiΓradkx-Reksp02+Γi+Γrad2,
Δkx=ωc21+|ε1r||ε1r||ε1r|-13/2exp-2|kx0|dr01kx0.
kx0=ε1ε2ε1+ε21/2ωc.
kx=n ωcsinθ=Rekx0+Δkx,
Rmin=1-4ΓiΓradΓi+Γrad2.
z=ζx, y.
εz; ω=θz-ζx, y+εωθζx, y-z,
εz; ω=ε0z; ω+εω-1ζx, yδz+0ζ2,
ε0z; ω=1, z>0= εω z<0.
ωksp=ω0ksp+ΔW,
ΔWr=0nω/cdksp+nω/cdkspfksp, ksp, ω, δ, σ,
ΔWi=0nω/cdksp+nω/cdkspgksp, ksp, ω, δ, σ.
kspω=ksp0ω+ΔK,
ΔK=ΔKr+iΔKi=ΔKr+iΔKi1+ΔKi2,
ΔKi1=1VE0nω/cdkspgksp, ksp, ω, δ, σ,
ΔKi2=1VEnω/cdkspgksp, ksp, ω, δ, σ,
R=1-4Γi×Γradkx-Reksp0ω+ΔK2+Γi+Γrad2.
kx=nω/csin θ=Rekx0+Δkx+ΔK,
Rmin=1-4ΓiΓradΓi+Γrad2.
ΔWrksp, ω, δ, σ=-ω4ckspδσ2|εω||εω|+1|εω|-13/2×VEkspG2ksp, ω, σ,
ΔWiksp, ω, δ, σ=ω4ckspδσ2|εω||εω|+1|εω|-13/2×VEkspG1ksp, ω, σ,
G1ksp, ω, σ=-2ksp2e1ksp, ω, σ-k˜βk˜1a1ksp, ω, σ+b1ksp, ω, σ+2ksp-k˜βd2ksp, ω, σ+k˜1c2×ksp, ω, σ,
G2ksp, ω, σ=-2ksp2e2ksp, ω, σ-k˜βk˜1a2ksp, ω, σ+b2ksp, ω, σ+2kspk˜βd1ksp, ω, σ+k˜1c1×ksp, ω, σ,

Metrics