Abstract

We investigate the characteristics of a 37-channel micromachined membrane deformable mirror for wave-front generation. We demonstrate wave-front generation of the first 20 Zernike polynomial modes, using an iterative algorithm to adjust driving voltages. The results show that lower-order-mode wave fronts can be generated with good accuracy and large dynamic range, whereas the generation of higher-order modes is limited by the number of the actuator channels and the working range of the deformable mirror. The speed of wave-front generation can be as fast as several hundred hertz. Our results indicate that, in addition to generation of wave fronts with known aberrations, the characteristics of the micromachined membrane deformable mirror device can be useful in adaptive optics systems for compensating the first five orders of aberration.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  2. J. Y. Wang, D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980).
    [CrossRef] [PubMed]
  3. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  4. L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.
  5. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.
  6. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef] [PubMed]
  7. D. J. Cho, S. T. Thurman, J. T. Donner, G. M. Morris, “Characteristics of a 128 × 128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23, 969–971 (1998).
    [CrossRef]
  8. F. Vargas-Martin, P. Artal, “Phasor averaging for wavefront correction with liquid-crystal spatial light modulators,” Opt. Commun. 152, 233–238 (1998).
    [CrossRef]
  9. M. A. A. Neil, M. J. Booth, T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998).
    [CrossRef]
  10. G. Vdovin, P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968–2972 (1995).
    [CrossRef] [PubMed]
  11. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  12. L. Zhu, P.-C. Sun, Y. Fainman, “Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror,” Appl. Opt. 38, 5350–5354 (1999).
    [CrossRef]

1999 (2)

1998 (3)

1997 (2)

1995 (1)

1980 (1)

1976 (1)

Applegate, R. A.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Artal, P.

F. Vargas-Martin, P. Artal, “Phasor averaging for wavefront correction with liquid-crystal spatial light modulators,” Opt. Commun. 152, 233–238 (1998).
[CrossRef]

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Atchison, D. A.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Bartsch, D.-U.

Booth, M. J.

Burns, S. A.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Campbell, M. C.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Cho, D. J.

DeVore, S. L.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

Donner, J. T.

Fainman, Y.

Freeman, W. R.

Greivenkamp, J. E.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Howland, H. C.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Liang, J.

Love, G. D.

Malacara, D.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

Morris, G. M.

Navarro, R.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Neil, M. A. A.

Noll, R. J.

Sarro, P. M.

Sarver, E. J.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Silva, D. E.

Smith, G.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Sun, P.-C.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Thurman, S. T.

Vargas-Martin, F.

F. Vargas-Martin, P. Artal, “Phasor averaging for wavefront correction with liquid-crystal spatial light modulators,” Opt. Commun. 152, 233–238 (1998).
[CrossRef]

Vdovin, G.

Wang, J. Y.

Williams, D. R.

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

Wilson, T.

Zhu, L.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

F. Vargas-Martin, P. Artal, “Phasor averaging for wavefront correction with liquid-crystal spatial light modulators,” Opt. Commun. 152, 233–238 (1998).
[CrossRef]

Opt. Lett. (2)

Other (2)

L. N. Thibos, R. A. Applegate, H. C. Howland, D. R. Williams, P. Artal, R. Navarro, M. C. Campbell, J. E. Greivenkamp, J. T. Schwiegerling, S. A. Burns, D. A. Atchison, G. Smith, E. J. Sarver, “A VSIA sponsored effort to develop methods and standards for the comparison of the wavefront aberration structure of the eye between devices and laboratories,” in Digest of Topical Meeting on Vision Science and Its Applications (Optical Society of America, Washington D.C., 1999), pp. 236–239.

D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 461–472.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electrode layout of the 37-channel MMDM.

Fig. 2
Fig. 2

Experimental adaptive optical system used to generate wave fronts of Zernike polynomial modes with the MMDM.

Fig. 3
Fig. 3

Measured Zernike coefficients of wave fronts of the first 20 Zernike modes generated in the experimental system with target coefficients of (a) 3 × 10-4 and (b) -3 × 10-4.

Fig. 4
Fig. 4

Target wave fronts with coefficient of 4 × 10-4 (column 1), generated wave fronts (column 2), and null interferograms of the generated wave fronts interfered with a reference plane wave (column3). In wave-front plots of the first and second columns, the unit of the z axis is the number of wavelengths.

Tables (2)

Tables Icon

Table 1 Zernike Polynomials and Their Meaninga,b

Tables Icon

Table 2 Values of the Corresponding Zernike Coefficients of Generated Wave-Front Modes and their rms Wave-Front Variances from the Ideal Wave Fronts with the Same Zernike Coefficient Values

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕx, y=k=1Makzkx, y+δϕx, y
σ2=1Aapertureϕx, y-ϕdx, y2dxdy,
σ2=k=1Mak-adk2wk2+δσ2=a-ad * w2+δσ2,
wk2=1Aaperturezkx, y2dxdy,
cnew=cold-2μBTa-ad * w2,
wk2=1/Nk,
σ2=k=1Mak-adk2Nk+δσ2,

Metrics