Abstract

We analyze the imaging performance of a number of diluted-aperture configurations, using the modulation transfer function. We select a single figure of merit, the practical cutoff frequency, rather than the traditional cutoff frequency, as the more useful frequency for the detection of details. Using this new parameter, we compare the performance of a number of published aperture configurations. On the basis of this analysis a new configuration is proposed for the Polar Stratospheric Telescope primary.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
    [CrossRef]
  2. M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correlation-feasibility study,” Appl. Opt. 34, 7295–7301 (1995).
    [CrossRef] [PubMed]
  3. P. Y. Bely, “NGST: a feasibility study of the Next Generation Space Telescope,” in Optical Telescopes of Today and Tomorrow: Following in the Direction of Tycho Brahe, A. Ardeberg, ed., Proc. SPIE2871, 800–805 (1996).
    [CrossRef]
  4. J. C. Mather, “The Cosmic Background Explorer (COBE) Mission,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 146–157 (1993).
    [CrossRef]
  5. M. F. Kessler, “Science with the infrared space observatory,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 2–8 (1993).
    [CrossRef]
  6. M. F. Kessler, “Infrared Space Observatory (ISO)—mission and spacecraft,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 9–14 (1993).
    [CrossRef]
  7. D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
    [CrossRef]
  8. A. N. Bunner, “Optical array for future astronomical telescopes in space,” in Infrared Adaptive and Synthetic Aperture Optical Systems, R. Johnson, W. Wolfe, J. Fender, eds., Proc. SPIE634, 180–188 (1986).
    [CrossRef]
  9. E. L. Dereniak, “Application of a synthetic aperture optical system to infrared image,” Appl. Opt. 12, 487–492 (1973).
    [CrossRef] [PubMed]
  10. H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
    [CrossRef]
  11. M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).
  12. L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
    [CrossRef]
  13. M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).
  14. C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
    [CrossRef]
  15. J. E. Harvey, C. Ftaclas, “Field-of-view limitations of phased telescope arrays,” Appl. Opt. 34, 5787–5798 (1995).
    [CrossRef] [PubMed]
  16. M. S. Scholl, “Star field identification algorithm,” Opt. Lett. 18, 399–401 (1993).
    [CrossRef] [PubMed]
  17. M. S. Scholl, “Experimental demonstration of a star field identification algorithm,” Opt. Lett. 18, 402–404 (1993).
    [CrossRef] [PubMed]
  18. R. J. Spehalski, M. W. Werner, “Objectives for the space infrared telescope facility,” in Infrared Technology XVII, B. F. Andresen, M. Scholl, I. J. Spiro, eds., Proc. SPIE1540, 2–10 (1991).
    [CrossRef]
  19. M. S. Scholl, G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with rotationally-shearing interferometer,” Infrared Phys. Technol. (to be published).
  20. M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
    [CrossRef]
  21. M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
    [CrossRef]
  22. J. E. Nelson, “Stressed mirror polishing. 2. Fabrication of an off-axis section of a paraboloid,” Appl. Opt. 19, 2341–2352 (1980).
    [CrossRef] [PubMed]
  23. O. Fähner, H. Brug, C. Laan, H. Frankena, “Generation of on axis and off-axis conic surfaces of revolution by applying a tubular tool,” Appl. Opt. 36, 4490–4496 (1997).
    [CrossRef]
  24. J. Zimmerman, “Computer controlled optical surfacing off-axis aspheric mirror,” in Advanced Technology Optical Telescopes IV, L. Barr, ed., Proc. SPIE1236, 663–668 (1990).
    [CrossRef]
  25. M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of 1999 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 119–123.
  26. M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
    [CrossRef]
  27. S. M. Watson, J. P. Mills, “Two-point resolution criterion for multiaperture optical telescope,” J. Opt. Soc. Am. A 5, 893–903 (1988).
    [CrossRef]
  28. J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
    [CrossRef]
  29. R. Barakat, “Diluted aperture diffraction and object reconstruction,” Opt. Eng. 29, 131–139 (1990).
    [CrossRef]
  30. J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995).
    [CrossRef]
  31. R. R. Shannon, “Measures of image quality,” in Applied Optics and Optical Engineering, R. Kingslake, ed., (Academic, New York, 1970), Vol. III, pp. 184–187.
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1983), pp. 101–140.
  33. H. Ford, “A polar stratospheric telescope,” in Advanced Technology Optical Telescopes V, L. Stepp, ed., Proc. SPIE2199, 298–314 (1994).
    [CrossRef]
  34. Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994).
    [CrossRef]
  35. A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201.
    [CrossRef]
  36. M. J. E. Golay, “Point array having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971).
    [CrossRef]
  37. M. S. Scholl, “Rotating interferometer for detection and reconstruction of faint objects—simulation,” in Infrared Spaceborne Remote Sensing II, M. Scholl, ed., Proc. SPIE2268, 411–421 (1994).
    [CrossRef]
  38. F. Scott, D. Frauenhofer, “The modulation transfer function,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, eds. (Plenum, New York, 1971), pp. 291–306.
    [CrossRef]
  39. G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
    [CrossRef]
  40. G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999).
    [CrossRef]
  41. H. Osterberg, “Resolving power test,” in Military Standardization Handbook, Optical Design, MIL-HDBK-141 (U.S. Government Printing Office, Washington, D.C., 1962), p. 26-5.

1999 (2)

G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
[CrossRef]

G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999).
[CrossRef]

1997 (4)

M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).

O. Fähner, H. Brug, C. Laan, H. Frankena, “Generation of on axis and off-axis conic surfaces of revolution by applying a tubular tool,” Appl. Opt. 36, 4490–4496 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
[CrossRef]

1995 (5)

M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correlation-feasibility study,” Appl. Opt. 34, 7295–7301 (1995).
[CrossRef] [PubMed]

M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

J. E. Harvey, C. Ftaclas, “Field-of-view limitations of phased telescope arrays,” Appl. Opt. 34, 5787–5798 (1995).
[CrossRef] [PubMed]

J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995).
[CrossRef]

1994 (1)

Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994).
[CrossRef]

1993 (2)

1991 (1)

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

1990 (2)

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

R. Barakat, “Diluted aperture diffraction and object reconstruction,” Opt. Eng. 29, 131–139 (1990).
[CrossRef]

1988 (3)

S. M. Watson, J. P. Mills, “Two-point resolution criterion for multiaperture optical telescope,” J. Opt. Soc. Am. A 5, 893–903 (1988).
[CrossRef]

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

1980 (1)

1973 (1)

1971 (1)

Anderegg, M.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Axelrod, T. S.

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

Ayon, J. A.

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

Barakat, R.

R. Barakat, “Diluted aperture diffraction and object reconstruction,” Opt. Eng. 29, 131–139 (1990).
[CrossRef]

Bely, P. Y.

P. Y. Bely, “NGST: a feasibility study of the Next Generation Space Telescope,” in Optical Telescopes of Today and Tomorrow: Following in the Direction of Tycho Brahe, A. Ardeberg, ed., Proc. SPIE2871, 800–805 (1996).
[CrossRef]

Blea, J. P.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

Brug, H.

Bunner, A. N.

A. N. Bunner, “Optical array for future astronomical telescopes in space,” in Infrared Adaptive and Synthetic Aperture Optical Systems, R. Johnson, W. Wolfe, J. Fender, eds., Proc. SPIE634, 180–188 (1986).
[CrossRef]

Cesarsky, C. J.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Clegg, P. E.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Colella, N. J.

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

Colvin, M. E.

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

de Graauw, T.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

De Hainaut, C. R.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Dereniak, E. L.

Duneman, D. C.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

Dymale, R. C.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

Emery, R.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Fähner, O.

Fender, J. S.

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Ford, H.

H. Ford, “A polar stratospheric telescope,” in Advanced Technology Optical Telescopes V, L. Stepp, ed., Proc. SPIE2199, 298–314 (1994).
[CrossRef]

Frankena, H.

Frauenhofer, D.

F. Scott, D. Frauenhofer, “The modulation transfer function,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, eds. (Plenum, New York, 1971), pp. 291–306.
[CrossRef]

Ftaclas, C.

Garcia, G.

M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).

Golay, M. J. E.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1983), pp. 101–140.

Harvey, J.

J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995).
[CrossRef]

Harvey, J. E.

J. E. Harvey, C. Ftaclas, “Field-of-view limitations of phased telescope arrays,” Appl. Opt. 34, 5787–5798 (1995).
[CrossRef] [PubMed]

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

Hines, C. E.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

Katterloher, R. O.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Kessler, M. F.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

M. F. Kessler, “Science with the infrared space observatory,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 2–8 (1993).
[CrossRef]

M. F. Kessler, “Infrared Space Observatory (ISO)—mission and spacecraft,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 9–14 (1993).
[CrossRef]

Kotha, A.

J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995).
[CrossRef]

Laan, C.

Lawrence, G. N.

M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correlation-feasibility study,” Appl. Opt. 34, 7295–7301 (1995).
[CrossRef] [PubMed]

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

Ledebuhr, A. G.

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

Lemke, D.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Mather, J. C.

J. C. Mather, “The Cosmic Background Explorer (COBE) Mission,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 146–157 (1993).
[CrossRef]

Meinel, A. B.

A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201.
[CrossRef]

Meinel, M. P.

A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201.
[CrossRef]

Mills, J. P.

Nelson, J. E.

O’Neil, B. D.

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

Osterberg, H.

H. Osterberg, “Resolving power test,” in Military Standardization Handbook, Optical Design, MIL-HDBK-141 (U.S. Government Printing Office, Washington, D.C., 1962), p. 26-5.

Padilla, G. P.

M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).

Paez, G.

G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
[CrossRef]

G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999).
[CrossRef]

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of 1999 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 119–123.

M. S. Scholl, G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with rotationally-shearing interferometer,” Infrared Phys. Technol. (to be published).

Park, H. S.

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

Phillips, R.

J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995).
[CrossRef]

Randolph, J. E.

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

Rockwell, R. A.

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

Schapp, H.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Scholl, M. S.

G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999).
[CrossRef]

G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
[CrossRef]

M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).

M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).

M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correlation-feasibility study,” Appl. Opt. 34, 7295–7301 (1995).
[CrossRef] [PubMed]

Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994).
[CrossRef]

M. S. Scholl, “Star field identification algorithm,” Opt. Lett. 18, 399–401 (1993).
[CrossRef] [PubMed]

M. S. Scholl, “Experimental demonstration of a star field identification algorithm,” Opt. Lett. 18, 402–404 (1993).
[CrossRef] [PubMed]

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

M. S. Scholl, G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with rotationally-shearing interferometer,” Infrared Phys. Technol. (to be published).

M. S. Scholl, “Rotating interferometer for detection and reconstruction of faint objects—simulation,” in Infrared Spaceborne Remote Sensing II, M. Scholl, ed., Proc. SPIE2268, 411–421 (1994).
[CrossRef]

Scott, F.

F. Scott, D. Frauenhofer, “The modulation transfer function,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, eds. (Plenum, New York, 1971), pp. 291–306.
[CrossRef]

Shannon, R. R.

R. R. Shannon, “Measures of image quality,” in Applied Optics and Optical Engineering, R. Kingslake, ed., (Academic, New York, 1970), Vol. III, pp. 184–187.

Spehalski, R. J.

R. J. Spehalski, M. W. Werner, “Objectives for the space infrared telescope facility,” in Infrared Technology XVII, B. F. Andresen, M. Scholl, I. J. Spiro, eds., Proc. SPIE1540, 2–10 (1991).
[CrossRef]

Strojnik, M.

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of 1999 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 119–123.

Swinyard, B. M.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Tilger, C.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Vigroux, L.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Wang, Y.

M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).

Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994).
[CrossRef]

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

Watson, S. M.

Weaver, L. D.

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Werner, M. W.

R. J. Spehalski, M. W. Werner, “Objectives for the space infrared telescope facility,” in Infrared Technology XVII, B. F. Andresen, M. Scholl, I. J. Spiro, eds., Proc. SPIE1540, 2–10 (1991).
[CrossRef]

Wolf, J.

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

Woolf, N. J.

A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201.
[CrossRef]

Zimmerman, J.

J. Zimmerman, “Computer controlled optical surfacing off-axis aspheric mirror,” in Advanced Technology Optical Telescopes IV, L. Barr, ed., Proc. SPIE1236, 663–668 (1990).
[CrossRef]

Appl. Opt. (6)

Infrared Phys. Technol. (4)

G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
[CrossRef]

G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (8)

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

R. Barakat, “Diluted aperture diffraction and object reconstruction,” Opt. Eng. 29, 131–139 (1990).
[CrossRef]

Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).

C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995).
[CrossRef]

M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990).
[CrossRef]

M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991).
[CrossRef]

Opt. Lett. (2)

Rev. Mex. Fis. (1)

M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).

Other (18)

H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989).
[CrossRef]

P. Y. Bely, “NGST: a feasibility study of the Next Generation Space Telescope,” in Optical Telescopes of Today and Tomorrow: Following in the Direction of Tycho Brahe, A. Ardeberg, ed., Proc. SPIE2871, 800–805 (1996).
[CrossRef]

J. C. Mather, “The Cosmic Background Explorer (COBE) Mission,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 146–157 (1993).
[CrossRef]

M. F. Kessler, “Science with the infrared space observatory,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 2–8 (1993).
[CrossRef]

M. F. Kessler, “Infrared Space Observatory (ISO)—mission and spacecraft,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 9–14 (1993).
[CrossRef]

D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994).
[CrossRef]

A. N. Bunner, “Optical array for future astronomical telescopes in space,” in Infrared Adaptive and Synthetic Aperture Optical Systems, R. Johnson, W. Wolfe, J. Fender, eds., Proc. SPIE634, 180–188 (1986).
[CrossRef]

R. J. Spehalski, M. W. Werner, “Objectives for the space infrared telescope facility,” in Infrared Technology XVII, B. F. Andresen, M. Scholl, I. J. Spiro, eds., Proc. SPIE1540, 2–10 (1991).
[CrossRef]

M. S. Scholl, G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with rotationally-shearing interferometer,” Infrared Phys. Technol. (to be published).

A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201.
[CrossRef]

M. S. Scholl, “Rotating interferometer for detection and reconstruction of faint objects—simulation,” in Infrared Spaceborne Remote Sensing II, M. Scholl, ed., Proc. SPIE2268, 411–421 (1994).
[CrossRef]

F. Scott, D. Frauenhofer, “The modulation transfer function,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, eds. (Plenum, New York, 1971), pp. 291–306.
[CrossRef]

H. Osterberg, “Resolving power test,” in Military Standardization Handbook, Optical Design, MIL-HDBK-141 (U.S. Government Printing Office, Washington, D.C., 1962), p. 26-5.

R. R. Shannon, “Measures of image quality,” in Applied Optics and Optical Engineering, R. Kingslake, ed., (Academic, New York, 1970), Vol. III, pp. 184–187.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1983), pp. 101–140.

H. Ford, “A polar stratospheric telescope,” in Advanced Technology Optical Telescopes V, L. Stepp, ed., Proc. SPIE2199, 298–314 (1994).
[CrossRef]

J. Zimmerman, “Computer controlled optical surfacing off-axis aspheric mirror,” in Advanced Technology Optical Telescopes IV, L. Barr, ed., Proc. SPIE1236, 663–668 (1990).
[CrossRef]

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of 1999 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 119–123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

MTF of (a) a monolithic and (b) the simplest diluted optical systems. f c denotes the cutoff frequency and f R is the practical cutoff frequency; L is the separation of the aperture centers; D is diameter.

Fig. 2
Fig. 2

Aperture configuration of the primary mirror of the POST. The larger mirror covers baselines up to 1.8 m. The unequally spaced 0.6-m-diameter mirrors uniformly sample the spatial-frequency plane for all baselines up to 6 m.

Fig. 3
Fig. 3

Diluted-aperture mirror composed of six segments: (x n , y n ) is the location of the center of the nth aperture.

Fig. 4
Fig. 4

MTF of a six-aperture redundant system with a dilution factor of 1.5. It has a cutoff frequency similar to that of a monolithic mirror.

Fig. 5
Fig. 5

MTF of a six-aperture redundant system with a dilution factor of 3.3. Its practical resolution limit is reduced to that of a single-mirror segment.

Fig. 6
Fig. 6

MTF of the Golay-6 nonredundant system with a dilution factor of 2.6. Its MTF does not reach the cutoff frequency of an equivalent monolithic mirror.

Fig. 7
Fig. 7

MTF of the Golay-9 nonredundant system with a dilution factor of 4.00. The MTF has a variable cutoff frequency that depends on the angular position of the apertures.

Fig. 8
Fig. 8

MTF of the Golay-12 nonredundant system with a dilution factor of 3.7. Its optimized configuration provides symmetrical coverage of the spatial frequencies on the f x f y plane.

Fig. 9
Fig. 9

MTF of the Mills cross configuration with a dilution factor of 5.86. It has adequate performance only along the f x and f y axes. It is composed of two linear nonredundant arrays along the x and y directions.

Fig. 10
Fig. 10

MTF of the POST. The practical resolution limit of the POST corresponds to the cutoff frequency of the larger mirror in the array. This is a consequence of its high dilution factor and the redundancy of the configuration.

Fig. 11
Fig. 11

Proposed configuration of the primary mirror of the POST, referred to as POST-1 in the text, and its MTF. The larger mirror covers baselines as large as 1.8 m. The unequally spaced 1.0-m-diameter mirrors sample the spatial-frequency plane uniformly for all baselines up to 6 m. The system has a dilution factor is 3.89.

Fig. 12
Fig. 12

Worst maximum spatial frequency (f R ) as a function of dilution factor for a number of configurations normalized with respect to the cutoff frequency of a 10-m-diameter monolithic mirror.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Px, y=circr/a ** n=1N δx-rn cos θn, y-rn sin θn,
hU, V=circr/a×n=1N δx-rn cos θn, y-rn sin θnU = 2πxi/λfV = 2πyi/λf.
hU, V=2πaJ1aU2+V21/2U2+V21/2 ×n=1Nexp-iUrn cos θn+Vrn sin θn.
SU, V=IU, VIa=2 J1aU2+V21/2aU2+V21/22×1N+2N2m=1N-1n=m+1NcosrnU cos θn+V sin θn-U cos θm-V sin θm.
OTFfx, fy=-- SU, Vexp-i2πfxU+fyVdUdVfx=x/λf fy=y/λf .

Metrics