Abstract

We describe a device that applies the advantages of the space invariance of telecentric triangulation with the measurement of large objects (1 m3). Because the scan motion of the laser beam is decoupled from the physical transport of the sensor head, the fast scanning of large volumes becomes feasible. The device consists of a triangulation laser telemeter head that uses a large liquid primary mirror and an aspheric secondary mirror to realize the telecentric f-θ objective. We propose using liquid-mirror technology to make low-cost large objectives that have low f numbers, a diffraction-limited performance, and low scattering in the visible. This new optical system is useful for 3-D measurement. We discuss the optical configuration of the system and the performance of a laboratory prototype. The prototype has a standoff distance of 1.5 m, a telecentric scan as long as 1 m, a depth of view of 1 m, and a relative depth resolution of 0.5–1 mm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Häusler, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
    [CrossRef]
  2. W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).
  3. W. Stevenson, “The use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering,” in Industrial Applications of Optical Inspection, Metrology, and Sensing, G. M. Brown, K. G. Harding, H. Stahl, eds., Proc. SPIE1821, 406–414 (1992).
    [CrossRef]
  4. S. Thibault, S. Szapiel, E. F. Borra, “Development of a telecentric 3D sensor for large volume inspection,” in Three-dimensional Imaging and Laser-Based Systems for Metrology and Inspection III, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE3204, 126–136 (1997).
    [CrossRef]
  5. F. Blais, M. Rioux, J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” in Optomechanical and Electro-Optical Design of Industrial Systems, R. J. Beiringer, K. G. Harding, eds., Proc. SPIE959, 225–245 (1988).
    [CrossRef]
  6. L. Girard, E. F. Borra, “Optical tests of a 2.5-m diameter liquid mirror: behavior under external perturbations and scattered light measurements,” Appl. Opt. 36, 6278–6288 (1997).
    [CrossRef]
  7. A. Potter, M. Mulrooney, “Liquid metal mirror for optical measurements of orbital debris,” Adv. Space Res. 19, 213–219 (1997).
    [CrossRef]
  8. E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
    [CrossRef]
  9. M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23, 3837–3844 (1984).
    [CrossRef] [PubMed]

1997 (2)

1992 (1)

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

1985 (1)

G. Häusler, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
[CrossRef]

1984 (1)

Amstel, W. D.

W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).

Asjes, R. J.

W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).

Beraldin, J.-A.

F. Blais, M. Rioux, J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” in Optomechanical and Electro-Optical Design of Industrial Systems, R. J. Beiringer, K. G. Harding, eds., Proc. SPIE959, 225–245 (1988).
[CrossRef]

Blais, F.

F. Blais, M. Rioux, J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” in Optomechanical and Electro-Optical Design of Industrial Systems, R. J. Beiringer, K. G. Harding, eds., Proc. SPIE959, 225–245 (1988).
[CrossRef]

Boily, E. F.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

Borra, E. F.

L. Girard, E. F. Borra, “Optical tests of a 2.5-m diameter liquid mirror: behavior under external perturbations and scattered light measurements,” Appl. Opt. 36, 6278–6288 (1997).
[CrossRef]

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

S. Thibault, S. Szapiel, E. F. Borra, “Development of a telecentric 3D sensor for large volume inspection,” in Three-dimensional Imaging and Laser-Based Systems for Metrology and Inspection III, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE3204, 126–136 (1997).
[CrossRef]

Content, R.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

Girard, L.

L. Girard, E. F. Borra, “Optical tests of a 2.5-m diameter liquid mirror: behavior under external perturbations and scattered light measurements,” Appl. Opt. 36, 6278–6288 (1997).
[CrossRef]

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

Häusler, G.

G. Häusler, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
[CrossRef]

Maul, M.

G. Häusler, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
[CrossRef]

Merkelbach, P.

W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).

Mulrooney, M.

A. Potter, M. Mulrooney, “Liquid metal mirror for optical measurements of orbital debris,” Adv. Space Res. 19, 213–219 (1997).
[CrossRef]

Potter, A.

A. Potter, M. Mulrooney, “Liquid metal mirror for optical measurements of orbital debris,” Adv. Space Res. 19, 213–219 (1997).
[CrossRef]

Rioux, M.

M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23, 3837–3844 (1984).
[CrossRef] [PubMed]

F. Blais, M. Rioux, J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” in Optomechanical and Electro-Optical Design of Industrial Systems, R. J. Beiringer, K. G. Harding, eds., Proc. SPIE959, 225–245 (1988).
[CrossRef]

Stevenson, W.

W. Stevenson, “The use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering,” in Industrial Applications of Optical Inspection, Metrology, and Sensing, G. M. Brown, K. G. Harding, H. Stahl, eds., Proc. SPIE1821, 406–414 (1992).
[CrossRef]

Szapiel, S.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

S. Thibault, S. Szapiel, E. F. Borra, “Development of a telecentric 3D sensor for large volume inspection,” in Three-dimensional Imaging and Laser-Based Systems for Metrology and Inspection III, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE3204, 126–136 (1997).
[CrossRef]

Thibault, S.

S. Thibault, S. Szapiel, E. F. Borra, “Development of a telecentric 3D sensor for large volume inspection,” in Three-dimensional Imaging and Laser-Based Systems for Metrology and Inspection III, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE3204, 126–136 (1997).
[CrossRef]

Tremblay, L. M.

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

Van de Goor, P. F. A.

W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).

Adv. Space Res. (1)

A. Potter, M. Mulrooney, “Liquid metal mirror for optical measurements of orbital debris,” Adv. Space Res. 19, 213–219 (1997).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

E. F. Borra, R. Content, L. Girard, S. Szapiel, L. M. Tremblay, E. F. Boily, “Liquid mirrors: optical shop tests and contributions to the technology,” Astrophys. J. 393, 829–847 (1992).
[CrossRef]

Opt. Eng. (1)

G. Häusler, M. Maul, “Telecentric scanner for 3-D sensing,” Opt. Eng. 24, 978–980 (1985).
[CrossRef]

Other (4)

W. D. Amstel, R. J. Asjes, P. F. A. Van de Goor, P. Merkelbach, “Two- and three-dimensional laser scanners for fast dimensional measurements and inspection,” in Laser Dimensional Metrology: Recent Advances for Industrial Application, M. J. Downs, ed., Proc. SPIE2088, 93–96 (1993).

W. Stevenson, “The use of laser triangulation probes in coordinate measuring machines for part tolerance inspection and reverse engineering,” in Industrial Applications of Optical Inspection, Metrology, and Sensing, G. M. Brown, K. G. Harding, H. Stahl, eds., Proc. SPIE1821, 406–414 (1992).
[CrossRef]

S. Thibault, S. Szapiel, E. F. Borra, “Development of a telecentric 3D sensor for large volume inspection,” in Three-dimensional Imaging and Laser-Based Systems for Metrology and Inspection III, K. G. Harding, D. J. Svetkoff, eds., Proc. SPIE3204, 126–136 (1997).
[CrossRef]

F. Blais, M. Rioux, J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” in Optomechanical and Electro-Optical Design of Industrial Systems, R. J. Beiringer, K. G. Harding, eds., Proc. SPIE959, 225–245 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the optical configuration with two mirrors. To be telecentric, the chief ray from a selected field must originate from the focal point of the parabola. The sag of the secondary mirror can be calculated by the intersection of rays 1 and 2.

Fig. 2
Fig. 2

Optical layout of the writing channel. To respect the technical requirements, a low-power negative lens must be added between the pivot and the secondary mirror.

Fig. 3
Fig. 3

Field curvature and distortion in the working volume. The distortion of the system is well corrected. The strong field curvature does not affect performance.

Fig. 4
Fig. 4

Optical layout of both illumination and detection channels. Both illumination and detection channels use a parabolic liquid mirror.

Fig. 5
Fig. 5

Wave on the liquid surface in the radial direction (concentric wave). The departure from the ideal liquid surface caused by the traveling surface wave produces an angle error in the reflected beam.

Fig. 6
Fig. 6

Laboratory prototype of the telecentric f-θ system using a parabolic liquid mirror. The lens uses a 1.3-m-diameter liquid mirror with a 1-m focal length in combination with an aspheric secondary mirror.

Fig. 7
Fig. 7

Step wedge reconstruction using the optical telemeter. As we can see, a 1-mm resolution is easily achieved.

Tables (4)

Tables Icon

Table 1 Requirements of and Optical Sensor Used to Inspect a Large Volume

Tables Icon

Table 2 Range Magnification Data for the Central Position in the Working Volume

Tables Icon

Table 3 Departure from Ideal f-Conditions

Tables Icon

Table 4 Departure from Ideal Telecentricity

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

zr=2πw02λ,
x=1-bf-ztan θi
x=b-cf+ztan θ.
z=f1-btan θi-b-ctan θtan θi+tan θ.
a=b-c1-b.

Metrics