Abstract

Optical parametric oscillators (OPO’s) provide low-maintenance solid-state alternatives to dye lasers. We present results from use of a nearly degenerate broadband OPO for multiplex coherent anti-Stokes Raman spectroscopy. The system described is capable of generating spectra that cover a range of approximately 1000 cm-1.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996), pp. 354–360.
  2. J. G. Haub, M. J. Johnson, B. J. Orr, “Spectroscopic and nonlinear-optical applications of a tunable β-barium borate optical parametric oscillator,” J. Opt. Soc. Am. B 10, 1765–1777 (1993).
    [CrossRef]
  3. J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
    [CrossRef]
  4. J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
    [CrossRef]
  5. O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
    [CrossRef]
  6. N. Biswas, S. Umapathy, “Simple approach to determining absolute Raman cross sections using an optical parametric oscillator,” Appl. Spectrosc. 52, 496–499 (1998).
    [CrossRef]
  7. R. L. Byer, R. L. Herbst, Nonlinear Infrared Generation, Y.-R. Shen, ed. (Springer-Verlag, Berlin, 1977), pp. 81–137.
    [CrossRef]
  8. G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
    [CrossRef]
  9. P. Chen, “Synchronous scanning for coherent antistokes Raman spectroscopy using a tunable optical parametric oscillator,” Anal. Chem. 68, 3068–3071 (1996).
    [CrossRef] [PubMed]
  10. M. J. Johnson, J. G. Haub, H.-D. Barth, B. J. Orr, “Rotationally resolved coherent anti-Stokes Raman spectroscopy by using a tunable optical parametric oscillator,” Opt. Lett. 18, 441–443 (1993).
    [CrossRef] [PubMed]
  11. D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
    [CrossRef]
  12. J. Wang, M. H. Dunn, C. F. Rae, “Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth,” Opt. Lett. 22, 763–765 (1997).
    [CrossRef] [PubMed]
  13. J. Raffy, T. Debuisschert, J.-P. Pocholle, “Widely tunable optical parametric oscillator with electrical wavelength control,” Opt. Lett. 22, 1589–1591 (1997).
    [CrossRef]

1998 (3)

N. Biswas, S. Umapathy, “Simple approach to determining absolute Raman cross sections using an optical parametric oscillator,” Appl. Spectrosc. 52, 496–499 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

1997 (3)

1996 (2)

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

P. Chen, “Synchronous scanning for coherent antistokes Raman spectroscopy using a tunable optical parametric oscillator,” Anal. Chem. 68, 3068–3071 (1996).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Barth, H.-D.

Baxter, G. W.

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Biswas, N.

Bruggemann, D.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Byer, R. L.

R. L. Byer, R. L. Herbst, Nonlinear Infrared Generation, Y.-R. Shen, ed. (Springer-Verlag, Berlin, 1977), pp. 81–137.
[CrossRef]

Chen, P.

P. Chen, “Synchronous scanning for coherent antistokes Raman spectroscopy using a tunable optical parametric oscillator,” Anal. Chem. 68, 3068–3071 (1996).
[CrossRef] [PubMed]

Debuisschert, T.

Dunn, M. H.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996), pp. 354–360.

Fair, J. R.

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

Haub, J. G.

Herbst, R. L.

R. L. Byer, R. L. Herbst, Nonlinear Infrared Generation, Y.-R. Shen, ed. (Springer-Verlag, Berlin, 1977), pp. 81–137.
[CrossRef]

Hertzberg, J.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Herziger, G.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Hou, X. D.

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

Johnson, M. J.

Knoche, K.-F.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Michel, R. G.

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

Nesbitt, D. J.

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

Noll, R.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Orr, B. J.

Plusquellic, D. F.

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

Pocholle, J.-P.

Rae, C. F.

Raffy, J.

Riedle, E.

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

Tsai, S. J.

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

Umapathy, S.

Votava, O.

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

Wang, J.

Waschke, Y.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Wies, B.

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Yang, K. X.

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

Zhou, J. X.

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

Anal. Chem. (1)

P. Chen, “Synchronous scanning for coherent antistokes Raman spectroscopy using a tunable optical parametric oscillator,” Anal. Chem. 68, 3068–3071 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (1)

D. Bruggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Appl. Spectrosc. (2)

N. Biswas, S. Umapathy, “Simple approach to determining absolute Raman cross sections using an optical parametric oscillator,” Appl. Spectrosc. 52, 496–499 (1998).
[CrossRef]

J. X. Zhou, X. D. Hou, K. X. Yang, S. J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, A176–189 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman spectroscopy using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

J. Anal. At. Spectrom. (1)

J. X. Zhou, X. D. Hou, K. X. Yang, R. G. Michel, “Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium in Buffalo river sediment,” J. Anal. At. Spectrom. 13, 41–47 (1998).
[CrossRef]

J. Chem. Phys. (1)

O. Votava, J. R. Fair, D. F. Plusquellic, E. Riedle, D. J. Nesbitt, “High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators,” J. Chem. Phys. 107, 8854–8865 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Other (2)

R. L. Byer, R. L. Herbst, Nonlinear Infrared Generation, Y.-R. Shen, ed. (Springer-Verlag, Berlin, 1977), pp. 81–137.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996), pp. 354–360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conventional narrow-band CARS (left) and multiplex dual-broadband CARS (right) energy-level diagrams. The multiplex process uses broadband sources for ω1 and ω2 to probe multiple levels and a narrow-band ω3 source, resulting in a broadband output.

Fig. 2
Fig. 2

Experimental layout of the multiplex CARS system.

Fig. 3
Fig. 3

Type I phase-matching curve for a BBO OPO with a pump wavelength of 532 nm. At a crystal angle of 22.884° (shown by the horizontal line), these curves predict degenerate behavior (λsignal = λidler = 1064 nm) at 23 °C but not at 26 °C (λsignal = 1038 nm, λidler = 1092 nm).

Fig. 4
Fig. 4

Spectral output for BOPO, ranging from pseudodegenerate to nondegenerate modes. Spectrum (a) was recorded when the BBO crystal was at room temperature (23 °C), and (b)–(e) were recorded as the crystal warmed up during operation (the air temperature surrounding the crystal increased from 23 °C to 26 °C over a period of 3 h).

Fig. 5
Fig. 5

Upper portion shows simulations of the BOPO output for pseudodegenerate (dash–dot curve), near-degenerate (solid curve), and nondegenerate (dashed curve) modes. The lower portion shows the corresponding distributions of photon pairs as a function of Δλ, which increases from left to right.

Fig. 6
Fig. 6

Spectral results from multiplex CARS in benzene and chloroform vapor with the BOPO under three different modes. The top curve shows a loss in the intensity of high-frequency peaks, whereas the bottom curve shows loss of intensity for the low- to middle-frequency peaks.

Fig. 7
Fig. 7

Two typical multiplex CARS spectra of iodine vapor, followed by the difference spectrum (upper minus lower).

Metrics